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Our Environmental System Consists of Complex Interactions on 
Different Spatial and Temporal Scales 
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The modeling system we have been using:  

WRF (MM5)/Smoke/CMAQ 



Clouds: 

• Impact photolysis rates (impacting photochemical reactions for ozone and fine particle 
formation). 

• Impact transport/vertical mixing, LNOx, aqueous chemistry, wet removal, aerosol 
growth/recycling and indirect effects. 

BL Heights: 
• Affects dilution and pollutant concentrations. 

THE ROLE OF PHYSICAL ATMOSPHERE IN AIR QUALITY CHEMISTRY 

Temperature: 

• impacts biogenic emissions (soil NO, isoprene) as well as anthropogenic evaporative losses. 

• Affects chemical reaction rates and thermal decomposition of nitrates. 

Moisture: 

• Impacts gas/aerosol chemistry, as well as aerosol formation and growth. 

Winds: 

• Impacts transport/transformation 



     

Air Quality Modeling Systems Recreate the Complex Interactions of the 
Environment But the Uncertainties Are Still High 
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Data Assimilation Can Improve Model Performance 

* Surface observations while valuable, are 
not adequate.  They are sparse point 
measurements, while model grid cell 
represents average quantity for an 
inhomogeneous environment. 

NWS observations on 8km grid 

* Satellite observations offer an integral 
quantity comparable to model grid 
average quantity 

* Geostationary satellite provides high 
sampling frequency 

* Polar orbiting satellites provide 
higher spatial resolution at the 
expense of temporal resolution AVHRR  GOES-8 Skin Temperature 

19 May 1999  3:00 PM CDT 



Satellite Data Assimilation into Meteorological / 
Air Quality Models 

Motivation: 
 To improve the fidelity of the physical atmosphere in air quality modeling 

systems such as WRF/MM5/CMAQ. 

 Models are too smooth and do not maintain as much energy at higher 
frequencies as observations.  Surface properties and clouds are among 
major model uncertainties causing this problem.  NWS stations are too 
sparse for model spatial resolution and are not representative of the grid 
averaged quantity.  Therefore, their utilization in data assimilation is 
limited.  On the other hand, satellite data provide pixel integral quantity 
compatible with model grid. 

Targets for assimilation: 
 Surface energy budget: Insolation, albedo, Moisture availability, 

and bulk heat capacity. 

 Vertical motion and clouds. 

 Photolysis rates in CMAQ 



Physical Model 

Recreates Physical 
Atmosphere 

Chemical Model 

Recreates Chemical 
Atmosphere 

Geostationary 
Satellite 

•Insolation 
•Skin temperatures 
•Cloud Properties 

Satellite derived 
Cloud properties for 

photolysis rates 

MODIS 
•Surface emissivity 
•Surface albedo 
•Skin temperatures 

Satellite trace gas 
and aerosol 
observations 

Remotely Sensed Observations Can Improve the Scientific Understanding 
of the Environment as Well as Improving the Model Performance 

Geostationary and Polar Orbiting Observations for Evaluation 

ASSIMILATION 



Taken from Carlson (1986) to demonstrate the sensitivity of the surface energy budget model.  
Each panel represents the sensitivity of the simulated LST to uncertainty in a given parameter 

Sensitivity of Surface Energy Budget 
 to Various Parameters 

Moisture 
Availability 

Thermal 
Inertia 



* Assimilation performed 
in mid-morning 

17 LST 19 LST 

Assimilation 
Period 

Assimilate: 
 
* Land Surface 

Temperature Tendencies 
computed from hourly 
images. 
 

* Solar insolation 
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* Assimilation performed 
in early evening 
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Model 
NO assimilation 
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Satellite 
Observation 

Our work during Texas Air Quality Study has shown that the satellite data 
assimilation technique greatly improves the surface/air temperature predictions. 

2-M Temperature Bias
(12-km Domain over Texas)
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Comparing model 2-M temperature 
predictions to the observed temperatures 
from National Weather Service stations 
shows that the satellite assimilation 
technique (blue line) reduces the forecast 
bias in the model (warm bias at night and 
cold bias during the day). 
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Addressing the Problem of Dry/Warm Bias in the 
Assimilation Technique 

• Improvements we made in MM5 (e.g., better numerical solvers in the surface module, 
etc.) helped in identifying a main cause of dry/warm bias in the model. 

• Problem: 
– The MM5 slab model utilizes one temperature to describe impact of the land in the surface to 

boundary layer interface.  But satellite sees the surface radiating skin rather than the ground 
which describes some layer of finite depth. 
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Step 1: Assuming an infinitesimally thin skin, we can solve for Skin temperature 
from diagnostic Surface Energy balance equation using root finding technique 
 
Step 2: Apply Zilitinkevich (1970) adjustment to arrive at Aerodynamic temperature 
 
 
 
Step 3: Calculate Ground temperature using prognostic Surface Energy balance 
Equation 
 
Step 4: Arrive at a physically consistent 3-temperature system 
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Results SGP CTRL    OBS  ASSIM 

Hourly adjustment 

5 min. adjustment 



SUN 

BL OZONE CHEMISTRY 
 
O3 + NO       -----> NO2 + O2 
 
NO2 + hν (λ<420 nm) -----> O3 + NO 
VOC + NOx + hν   -----> O3 + Nitrates 
           (HNO3, PAN, RONO2) 
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Cloud albedo, surface 
albedo, and insolation are 
retrieved based on Gautier et 
al. (1980), Diak and Gautier 
(1983).  From GOES visible 
channel centered at .65 µm. 

Surface 

Inaccurate cloud 
prediction results in 
significant under-/over-
prediction of ozone.  Use 
of satellite cloud 
information greatly 
improves O3 predictions. 
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ADJUSTING PHOTOLYSIS RATES IN CMAQ BASED ON GOES 
OBSERVED CLOUDS 

NO, NO2, O3 & JNO2 Differences (Satellite-Control)
(Point A: x=38:39, y=30:31, lon=-95.3, lat=29.7)
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Adapted from: Pour-Biazar et al., 2007 

  This technique will be included in the next release of CMAQ 

  Cloud albedo and cloud top temperature from GOES is used to calculate cloud transmissivity and 
cloud thickness 

  The information is fed into MCIP/CMAQ 

 CMAQ parameterization is bypassed and photolysis rates are then adjusted based on GOES cloud 
information  

Observed O3 vs Model Predictions
(South MISS., lon=-89.57, lat=30.23)
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Clouds at the Right Place and Time 

• Current Method for insolation and photolysis while improving 
physical atmosphere is inconsistent with model dynamics and 
cloud fields 

• What if we can specify a vertical velocity supporting the clouds 

W>0 

W<0 



0.65um VIS surface, cloud features 

FUNDAMENTAL APPROACH FOR CORRECTING SIMULATED CLOUD 
FIELDS 

 Use satellite cloud top temperatures and cloud albedoes to determine a 
maximum vertical velocity (Wmax) in the cloud column (Multiple Linear 
Regression). 

 Adjust divergence to comply with Wmax in a way similar to O’Brien (1970). 
 Nudge MM5 winds toward new horizontal wind field to sustain the vertical 

motion. 
 Remove erroneous model clouds by imposing subsidence and suppressing 

convective initiation. 

W<0 

W>0 

Underprediction 

Overprediction 

Satellite Model/Satellite comparison 



A 

B C 

Downward shortwave radiation in W 
m-2 at 2200 UTC 6 July 1999. 

(A)  Derived from GOES–8 satellite.   
(B)  Control run with no assimilation.  
(C)  Run with assimilation of satellite 
cloud information. 

MODEL 
ASSIMILATION 
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IMPLEMENTATION IN MM5 
Case study: SOS 1999, 8-km 

grid, Kain-Fritsch scheme 
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CURRENT EFFORTS 
 Two different tracks are followed: 

 Streamline the current technique and implement it in WRF.  

o Clearing erroneous clouds are more difficult in WRF.  WRF’s response to 
suppressing the convective parameterization is different from MM5 (WRF 
compensate by creating grid resolved clouds). 

 Revisit the problem and develop a simpler approach. 

o Focusing on daytime clouds, revisit the relationship between internal 
model cloud variables and relate them to what satellite can observe. 

RESULTS FROM SECOND TRACK ARE PRESENTED HERE 

 Case study: summer of 2006; WRF configuration: 36-km grid spacing, CONUS with 
42 vertical layers; SW radiation: Dudhia; LW radiation: RRTM; Monin_Obukhov 
similarity with NOAH LSM; PBL scheme: YSU; Microphysics: Lin; Cumulus 
parameterization: Kain-Fritsch, New Grell, Grell-Devenyi; IC/BC/nudging: EDAS. 



Scatter plot of total cloud 
water and maximum vertical 
velocity in the model column  

Scatter plot of cloud albedo 
versus maximum vertical 

velocity in the column  

LN (MaxW+.2) 
MaxW 

NO CLEAR FUNCTIONAL RELATIONSHIPS BETWEEN 
CLOUD WATER AND/OR CLOUD ALBEDO WITH MODEL 

VERTICAL MOTION 



Individual profiles indicate that the appropriate vertical velocity is tied to vertical 
position in the column and most importantly the vertical velocity must be 

occurring in area of reasonable moisture for clouds to develop. Thus it appears 
that clouds have a very sharp threshold of when clouds form. 
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cloud albedo 

RH < 95% RH > 95% 

positive W 
Functional relationships between cloud water and/or cloud albedo with model vertical motion was 
not clear. Thus, threshold relationships with vertical motion and relative humidity were examined. A 
contingency probability approach, where the coincidence of clouds/clear occurring with 
positive/negative vertical motion were examined. 

Model Cloud, W, and Relative Humidity 
Model conforms to Black and White Satellite Image 



  

CLEAR CLOUD 

OCEAN LAND OCEAN LAND 

height (m) w (m/s) RH (%) w (m/s) RH (%) w (m/s) RH (%) w (m/s) RH (%) 

 sfc 1000 -0.00253 72.08438 0.00377 39.52232 0.004865 99.12765 0.01269 99.6 

1000 2000 -0.00588 59.14449 -0.00278 51.23995 0.034022 97.07111 0.02132 99.9 

2000 4000 -0.00499 49.06997 -0.00745 41.42338 0.045954 95.62551 0.04551 100 

4000 7000 -0.00608 40.36083 -0.01002 31.64465 0.054684 101.8438 0.06112 100 

7000 10000 -0.01260 44.54638 -0.01433 36.94441 0.058007 99.79606 0.05639 98.96 

10000 13000 -0.01579 47.13423 -0.01054 33.53775 0.065545 97.62615 0.05350 96.8 

13000 ~top 0.00018 33.25936 0.00067 19.85797 0.044565 94.18938 0.03255 93.2 

Threshold Table for target W (August 2006 Simulation) 

Alternative Simple Approach for Creating Dynamical Support for Clouds 

 Obtain threshold vertical velocities and moisture needed to support cloud 
formation from WRF. 

 From GOES observations identify the areas of cloud under-/over-prediction and 
use the threshold information to obtain the needed vertical velocity in the model to 
achieve agreement with observations. 

 Having the threshold vertical velocity as the target, use one dimensional 
variational technique to calculate new divergence fields and target horizontal 
winds. 

 Use the new horizontal winds and threshold moisture fields as nudging fields in 
WRF to sustain the target vertical velocity. 



Underprediction 

Overprediction 

Areas of disagreement 
between model and 
satellite observation 

Areas of Underprediction/Overprediction can be identified for Correction 

A contingency table can be 
constructed to explain 

agreement/disagreement 
with observation  
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Grell-Devenyi scheme
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Agreement between the model and OBS
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Evaluating Model Cloud Prediction During August 2006 
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Agreement Index (AI) =(Clear/Cloudy agreements) / (Total Number of Grids) 

RESULTS FROM MONTH LONG SIMULATION 

Regardless of convective parameterization scheme used, cloud assimilation improves 
model/observation agreement for most days 



CONCLUSION & FUTURE WORK 
• While functional statistical relationships between clouds and WRF model variables 

were not clear, an examination of coincident relations showed that threshold 
relations between vertical motion and relative humidity were very robust. 

• 98% of the model cloudy grids were associated with positive vertical motions and 
over 65% of the grids with clear condition were associated with negative vertical 
motions. This largely confirms the working hypothesis that in a GOES black and 
white image, white areas are associated with lifting and negative areas with 
subsidence.   

• Adjusting model dynamics based on GOES observations, using threshold vertical 
velocities demonstrated improvements in model cloud prediction.  The technique 
was tested with Grell-Devenyi and Kain-Fritsch convective parameterization 
schemes over a month-long simulation and showed improvement over baseline 
simulations. 

• The technique did not perform as expected for some periods in August when a 
stationary front was present.  These periods should be studied in detail. 

• While the current results are encouraging, the technique needs further refinements. 
• Concurrent adjustment of relative humidity consistent with model statistics is 

needed to insure the effectiveness of dynamical adjustment. 
• Currently the statistical approach in finding target vertical velocity is being replaced 

with an analytical method. 
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