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Our Environmental System Consists of Complex Interactions on
Different Spatial and Temporal Scales

® Transport / Transformation | Y ® Removal

@ Agriculture L @ Industry

Air Pollution: Sources, Transport, Transformations, Removal, and Effects



AIR QUALITY MODELING SYSTEMS
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THE ROLE OF PHYSICAL ATMOSPHERE IN AIR QUALITY CHEMISTRY

Temperature:

. Impacts biogenic emissions (soil NO, isoprene) as well as anthropogenic evaporative losses.

. Affects chemical reaction rates and thermal decomposition of nitrates.

Moisture:

. Impacts gas/aerosol chemistry, as well as aerosol formation and growth.

BL Heights:
. Affects dilution and pollutant concentrations.

Winds:

. Impacts transport/transformation

Clouds:

. Impact photolysis rates (impacting photochemical reactions for ozone and fine particle
formation).

. Impact transport/vertical mixing, LNOx, agueous chemistry, wet removal, aerosol

growth/recycling and indirect effects.



Air Quality Modeling Systems Recreate the Complex Interactions of the
Environment But the Uncertainties Are Still High
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Data Assimilation Can Improve Model Performance

*Surface observations while valuable, are
not adequate. They are sparse point
measurements, while model grid cell
represents average quantity for an
inhomogeneous environment.

TR R R, e

* Satellite observations offer an integral

guantity comparable to model grid
average quantity

* Geostationary satellite provides high
sampling frequency

* Polar orbiting satellites provide
higher spatial resolution at the
‘ expense of temporal resolution

19 May 1999 3:00 PM CDT



Satellite Data Assimilation into Meteorological /
Air Quality Models

Motivation:

1 To improve the fidelity of the physical atmosphere in air quality modeling
systems such as WRF/MM5/CMAQ.

1 Models are too smooth and do not maintain as much energy at higher
frequencies as observations. Surface properties and clouds are among
major model uncertainties causing this problem. NWS stations are too
sparse for model spatial resolution and are not representative of the grid
averaged quantity. Therefore, their utilization in data assimilation is
limited. On the other hand, satellite data provide pixel integral quantity
compatible with model grid.

Targets for assimilation:

1 Surface energy budget: Insolation, albedo, Moisture availability,
and bulk heat capacity.

J  Vertical motion and clouds.

1  Photolysis rates in CMAQ

UAH




Remotely Sensed Observations Can Improve the Scientific Understanding
of the Environment as Well as Improving the Model Performance

____ The A-Train

Gegstationary MODIS Satellite derived Satellite trace gas

Satellite i )
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Geostationary and Polar Orbiting Observations for Evaluation




Sensitivity of Surface Energy Budget
to Various Parameters
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Taken from Carlson (1986) to demonstrate the sensitivity of the surface energy budget model.
Each panel represents the sensitivity of the simulated LST to uncertainty in a given parameter




Assimilate:
* Assimilation performed

* Assimilation performed * Land Surface _ _ _
in early evening Temperature Tendencies in mid-morning
computed from hourly
images.
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Our work during Texas Air Quality Study has shown that the satellite data
assimilation technique greatly improves the surface/air temperature predictions.

2-M Temperature Bias
(12-km Domain over Texas)

6 / adjustment Comparing mOde| 2-M temperature

/ predictions to the observed temperatures
—— from National Weather Service stations

shows that the satellite assimilation

technique (blue line) reduces the forecast

Moist d heat ; : . .
bias in the model (warm bias at night and

b 000 597000 8207000 3277000 4287000 72000 30700 SN0 oA 92 cold bias during the da
8/23/2000 8/24/2000 8/25/2000 8/26/2000 8/27/2000 8/28/2000 8/29/2000 8/30/2000 8/31/2000 9/1/2000  9/2/2000  9/3/2000 .

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

Date/Time




Addressing the Problem of Dry/Warm Bias in the
Assimilation Technique

* Improvements we made in MMS5 (e.g., better numerical solvers in the surface module,
etc.) helped in identifying a main cause of dry/warm bias in the model.

e Problem:

— The MMS5 slab model utilizes one temperature to describe impact of the land in the surface to
boundary layer interface. But satellite sees the surface radiating skin rather than the ground
WhICh descrlbes some layer of finite depth.
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Method

Step 1: Assuming an infinitesimally thin skin, we can solve for Skin temperature
from diagnostic Surface Energy balance equation using root finding technique

Step 2: Apply Zilitinkevich (1970) adjustment to arrive at Aerodynamic temperature

Toers = Too = T +0.0962(6, /K Nu,z, /v)™®

Step 3: Calculate Ground temperature using prognostic Surface Energy balance
Equation

Aero

Step 4: Arrive at a physically consistent 3-temperature system
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Photolysis Adjustment

( (CMAQ)
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retrieved based on Gautier et
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Satellite Method MMS5 Method

Photolysis Rates

Assume MM5 derived cloud
distribution is correct

Cloud top N «— Cloudtop
Determined from satellite IR Determined from model
temperature
Transmittance = Transmittance
: transmittance i
1- reflectance - absorption Determined from
LWC =1f(RH, T) and
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size
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atitude

ADJUSTING PHOTOLYSIS RATES IN CMAQ BASED ON GOES

OBSERVED CLOUDS

» This technique will be included in the next release of CMAQ

» Cloud albedo and cloud top temperature from GOES is used to calculate cloud transmissivity and

cloud thickness

» The information is fed into MCIP/CMAQ

» CMAQ parameterization is bypassed and photolysis rates are then adjusted based on GOES cloud
information
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Clouds at the Right Place and Time

» Current Method for insolation and photolysis while improving
physical atmosphere is inconsistent with model dynamics and
cloud fields

* What if we can specify a vertical velocity supporting the clouds

L e
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FUNDAMENTAL APPROACH FOR CORRECTING SIMULATED CLOUD

FIELDS
Satellite Model/Satellite comparison
e —= - 5o |\;}\ L L /l/} L L 1 :v\erF: 1
. Underprediction d H\Q NC 117 o0 Mz

ol

0.65um VIS surface, cloud features
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LON

» Use satellite cloud top temperatures and cloud albedoes to determine a
maximum vertical velocity (Wmax) in the cloud column (Multiple Linear
Regression).

» Adjust divergence to comply with Wmax in a way similar to O'Brien (1970).

» Nudge MM5 winds toward new horizontal wind field to sustain the vertical
motion.

» Remove erroneous model clouds by imposing subsidence and suppressing
convective initiation.
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IMPLEMENTATION IN MM5
Case study: SOS 1999, 8-km
grid, Kain-Fritsch scheme

Downward shortwave radiation in W

Satellite m-2 at 2200 UTC 6 July 1999.
OBSERVED | (A) Derived from GOES-8 satellite.
Insolation (B) Control run with no assimilation.

(C) Run with assimilation of satellite
cloud information.

MODEL
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ASSIMILATION

@ 60 10¢ 1BO 200 260 300 3600 400 4B0 600 650 8BGO B5GC 70C¢ 7TBO BOO B50 900 950 1000 10650 1100

UAH




MM5 PAUSE:
WRITE SPECIAL
HISTORY

A 4

CALL
PROGRAM
WADJ

A 4

READ MMS5,
SATELLITE,
SFC DATA

A 4

INTERPOLATE
TO SIGMA-H
GRID

To
eOJn LCULATE

CALCULATE
TOTAL CLOUD
DEPTH

A 4

REMOVE
SHALLOW
CLOUDS

CALCULATE
ZHMAX

ESTIMATE
PRECIP
RATES

A

X
TR

A

CHECK FOR
PRIOR
WMAX

A

CALCULATE
WMAX

CALCULATE
WMAX CLOUD
DEPTH

A

CALCULATE
NUMBER OF
CLOUD LAYERS

A

A 4

CALCULATE
MAXIMUM
HEATING

A 4

A 4

INTERPOLATE/
AVERAGE
BACK TO
MMS5 GRID

WRITE OUT
NUDGING
FILES

DETERMINE

STABLE/CONV.

CATEGORY

A

ADD NEW
DIVERGENT
COMPONENTS

DO STABLE
ADJUSTMENT

A

A 4

CALCULATE
NEW
DIVERGENT
COMPONENTS

?gﬂ@m

ADJUSTME

A

A 4

ADJUST
DIVERGENCE

MMb5
CONTINUE

Flowchart
showing the flow
of the processes
needed for cloud

@ flb ’?a/{y FOR WMAX

REMOVE
ERRONEOUS
CLOUDS

A 4

A

s

ORIGINAVS
DIVERGENT

COMPONENTS

DETERMINE
NUDGING
TIME SCALES

A

CALCULATE
ORIGINAL
DIVERGENT

A 4

COMPONENTS

CALCULATE
UPWARD
DEPTH

A

CALCULATE
ORIGINAL
DIVERGENCE

A

adjustment at
each hour

o

Ve




CURRENT EFFORTS

> Two different tracks are followed:
- Streamline the current technique and implement it in WRF.

O Clearing erroneous clouds are more difficult in WRF. WRF's response to
suppressing the convective parameterization is different from MM5 (WRF
compensate by creating grid resolved clouds).

- Revisit the problem and develop a simpler approach.

O Focusing on daytime clouds, revisit the relationship between internal
model cloud variables and relate them to what satellite can observe.

RESULTS FROM SECOND TRACK ARE PRESENTED HERE

» Case study: summer of 2006; WRF configuration: 36-km grid spacing, CONUS with
42 vertical layers; SW radiation: Dudhia; LW radiation: RRTM; Monin_Obukhov
similarity with NOAH LSM; PBL scheme: YSU; Microphysics: Lin; Cumulus
parameterization: Kain-Fritsch, New Grell, Grell-Devenyi; IC/BC/nudging: EDAS.

UAH




IF LalBeDl LB o TRAEN LR TUTAL LLWL

NO CLEAR FUNCTIONAL RELATIONSHIPS BETWEEN
CLOUD WATER AND/OR CLOUD ALBEDO WITH MODEL
VERTICAL MOTION

Scatter plot of total cloud
water and maximum vertical
velocity in the model column
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Individual profiles indicate that the appropriate vertical velocity is tied to vertical
position in the column and most importantly the vertical velocity must be
occurring in area of reasonable moisture for clouds to develop. Thus it appears
that clouds have a very sharp threshold of when clouds form.
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Model Cloud, W, and Relative Humidity
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Alternative Simple Approach for Creating Dynamical Support for Clouds

> Obtain threshold vertical velocities and moisture needed to support cloud
formation from WRF.

> From GOES observations identify the areas of cloud under-/over-prediction and
use the threshold information to obtain the needed vertical velocity in the model to
achieve agreement with observations.

> Having the threshold vertical velocity as the target, use one dimensional
variational technique to calculate new divergence fields and target horizontal
winds.

> Use the new horizontal winds and threshold moisture fields as nudging fields in
WREF to sustain the target vertical velocity.

Threshold Table for target W (August 2006 Simulation)

CLEAR CLOUD
OCEAN LAND OCEAN LAND

height (m) w (m/s) RH (%) w (m/s) RH (%) w (m/s) RH (%) w (m/s) RH (%)
sfc 1000 | -0.00253 | 72.08438 0.00377 | 39.52232 [ 0.004865 | 99.12765 | 0.01269 99.6
1000 2000 | -0.00588 | 59.14449 ( -0.00278 | 51.23995 | 0.034022 | 97.07111 | 0.02132 99.9
2000 4000 | -0.00499 | 49.06997 | -0.00745 | 41.42338 | 0.045954 | 95.62551 | 0.04551 100
4000 7000 | -0.00608 | 40.36083 | -0.01002 | 31.64465 | 0.054684 | 101.8438 | 0.06112 100
7000 10000 | -0.01260 | 44.54638 | -0.01433 | 36.94441 | 0.058007 | 99.79606 | 0.05639 98.96
10000 13000 | -0.01579 | 47.13423 | -0.01054 | 33.53775 | 0.065545 | 97.62615 | 0.05350 96.8
13000 ~top 0.00018 | 33.25936 0.00067 | 19.85797 | 0.044565 | 94.18938 | 0.03255 93.2




Areas of Underprediction/Overprediction can be identified for Correction
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Cloud Fraction
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Grell-Devenyi scheme
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Evaluating Model Cloud Prediction During August 2006

Agreement between the model and OBS
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RESULTS FROM MONTH LONG SIMULATION

Regardless of convective parameterization scheme used, cloud assimilation improves
model/observation agreement for most days

Agreement Index (Al) =(Clear/Cloudy agreements) / (Total Number of Grids)
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CONCLUSION & FUTURE WORK

» While functional statistical relationships between clouds and WRF model variables
were not clear, an examination of coincident relations showed that threshold
relations between vertical motion and relative humidity were very robust.

* 98% of the model cloudy grids were associated with positive vertical motions and
over 65% of the grids with clear condition were associated with negative vertical
motions. This largely confirms the working hypothesis that in a GOES black and
Wré)itgedimage, white areas are associated with lifting and negative areas with
subsidence.

» Adjusting model dynamics based on GOES observations, using threshold vertical
velocities demonstrated improvements in model cloud prediction. The technique
was tested with Grell-Devenyi and Kain-Fritsch convective parameterization
spherlne_s over a month-long simulation and showed improvement over baseline
simulations.

* The technique did not perform as expected for some periods in August when a
stationary front was present. These periods should be studied in detail.

» While the current results are encouraging, the technique needs further refinements.

» Concurrent adjustment of relative humidity consistent with model statistics is
needed to insure the effectiveness of dynamical adjustment.

» Currently the statistical approach in finding target vertical velocity is being replaced
with an analytical method.

UAH
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