DEVELOPMENT OF DECISION-SUPPORT TOOLS FOR TRANSPORTATION INFRASTRUCTURE ADAPTATION IN RESPONSE TO CLIMATE-INDUCED FLOOD RISK

Vanderbilt Center for Environmental Management Studies James C Banks Dissertation Research

Overview

- Climate Change
- Precipitation and Flooding
- Infrastructure and Transportation
- Making the Right Choice
- Review and Selection of Flood Damage Assessment Tools
- HAZUS-MH
- Research to Date
- The HAZUS-MH Flood Model
- Current Research Target
- Additional Research Need

Climate Change: A Problem of Growing Concern

- Intergovernmental Panel on Climate Change modeled several emission scenarios:
 - A1 Work population peaks mid-century then declines; rapid introduction of more efficient technologies
 - A1F Sub-scenario with energy from fossil fuels
 - A1T Sub-scenario with energy from non-fossil sources
 - A1B Sub-scenario with blend of fossil/non-fossil energy
 - A2 Increasing population growth; slower economic and technological change
 - B1 Similar to A1 but shift to less resource-dependent information and service economy
 - B2 Focuses on local solutions to economic, social and environmental issues

Precipitation and Flooding

Between 1975 and 1994, flooding accounted for the most deaths, damage to property, and damage to agriculture when compared to other natural disasters (Mileti 1999)

IPCC notes:

"...the most vulnerable industries, settlements, and societies are generally those in coastal and river flood plains, those whose economies are closely linked with climate-sensitive resources, and those in areas prone to extreme weather events, especially where rapid urbanization is occurring."

Infrastructure in America

- 2009 American Society of Civil Engineers gave an overall grade of "D" to US infrastructure
- ASCE recommends an investment of \$2.2 trillion between 2009 and 2014 to bring to passing grade
- Report did not address any additional stressors associated with climate change except on levees
- Hunt and Watkiss (2011) found that most activity focuses on minimizing infrastructure contribution to GHG emissions and not on its vulnerability to climate-changed induced events
- Transportation systems are of particular interest since:
 - They are mobility and lifeline of a community
 - Impacts are broad and varied
 - Most transportation infrastructure is at end of its design life
 - Impacts can be very disruptive and result in increased wear and tear to system, inability to respond to emergencies, delays in goods/service delivery

Making the Right Choices

What we know

- Climate change is occurring
- Already ailing transportation infrastructure is vulnerable
- Impacts are both direct and indirect
- Impacts and adaptation strategies must be evaluated
- Adaptation planning must occur in conjunction with competing priorities and with varied stakeholders
- A tool to assess climate change impacts on transportation infrastructure and evaluate the costeffectiveness of candidate adaptation strategies is needed

Review and Selection of Flood Damage Assessment Models

- Eleven models for flooding were identified for review
- Predominant problem with most of them was lack of damage estimation associated with flood inundation
- Only four models were identified as having native damage assessment capability
 - MIKE Flood
 - waterRIDE
 - HEC-FIA
 - HAZUS-MH

Model Evaluation Based on Selection Criteria

	Large Extent and Resolution	2D Analysis	Native Damage Assessment	Spatial Data Viewing	Cost <\$10,000	Average Technical Skills	Readily Available Training	Technical Support	Commonly Available Hardware
FLO-2D	•	•		•	•	•	•	•	•
TUFLOW	•	•			•	•	•	•	•
SMS	•	•		•	•	•	•	•	•
XP-SWMM	•	•		•	•	•	•	•	•
MIKE Flood	•	•	•	•		•	•	•	•
waterRIDE	•	•	•	•		•	•	•	•
ISIS	•	•		•	•	•		•	•
HEC-RAS	•				•	•	•	•	•
HEC-FIA	•	•	•	•	•		•		•
ArcGIS	•	•		•	•	•	٠	٠	٠
HAZUS-MH	•	•	•	•	•	•	•	•	•

HAZUS-MH

- Originally developed by FEMA as an earthquake prediction tool then expanded to flood and hurricane
- Performs two-dimensional estimate of flood
- Native damage estimation using USACE-derived depth-damage curves
- Comes pre-loaded with US Census data on housing, population and economic factors
- Program is free but requires ArcGIS spatial analysis software (\$2,500)

HAZUS-MH and the Assessment Criteria

Extent and Resolution

- Capable of modeling almost all major metropolitan areas
- Native Damage Assessment
 - Comes pre-loaded with basic information on all census areas of US as well as damage algorithms
- Spatial Viewing, Technical Ability, Cost and Hardware
 - Integrates with ArcGIS
 - Training is available from ESRI online for less than \$200 that will allow basic use
 - Runs on commonly available hardware

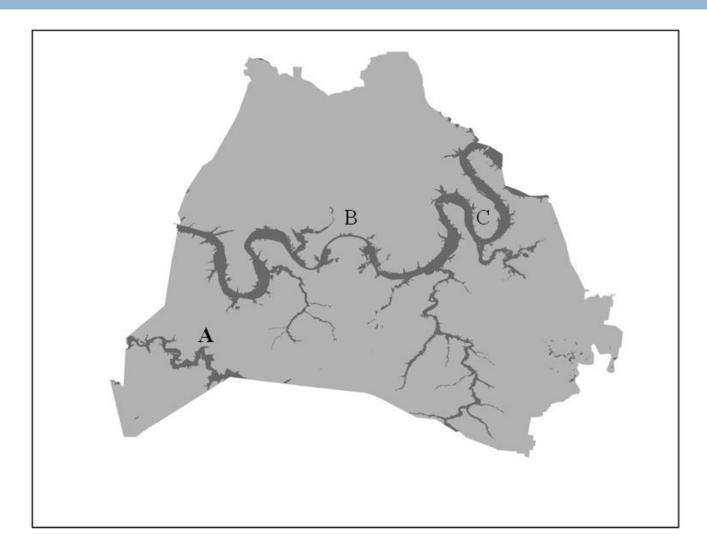
How HAZUS-MH Works

- □ HAZUS-MH performs 3 levels of analysis
 - Level 1 Utilizes pre-loaded data for all information
 - Level 2 Utilizes some pre-loaded and some user supplied
 - Level 3 Complete user customization for flood data and inventory

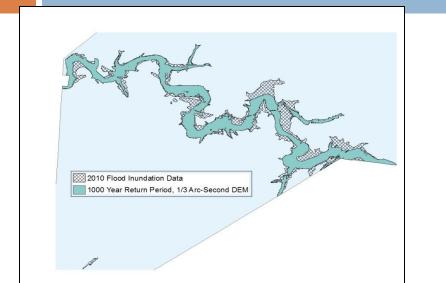
HAZUS-MH in Detail

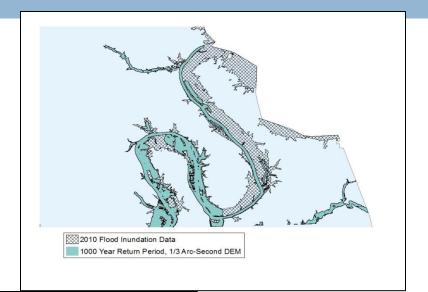
Flood loss in HAZUS-MH focuses on 5 elements

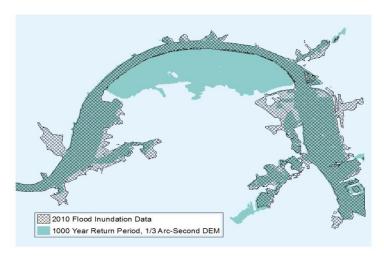
- Inventory data
 - Built environment
- Flood hazard data
 - Depth/Extent
- Direct physical damage
 - Depth-Damage relationship to built inventory
- Induced physical damage
 - Damage from flood disturbing hazardous material, entrained scour material, etc.
- Economic and social impact
 - Modified input-output model with and without depreciation

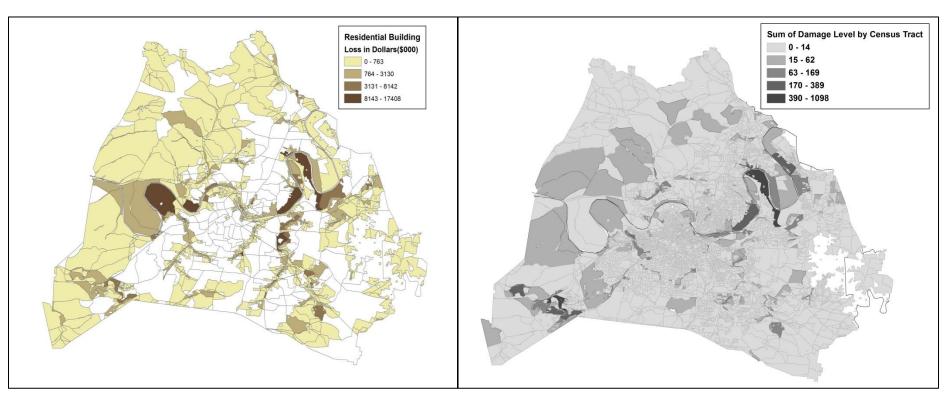

Research to Date

- Compared Hazus models to calibrated flood extent and damage surveys from the 2010 flood that impacted Davidson County, Tennessee (Nashville)
- Results of comparisons of flood models and 2010 data indicate:
 - Hazus can identify areas of impact at county resolution but not at sub-county resolution
 - At sub-county, Hazus fails to predict flood or damage with any certainty
 - Hazus underestimates flood surface areas even when extreme events are modeled


Hazus and USACE Data Compared

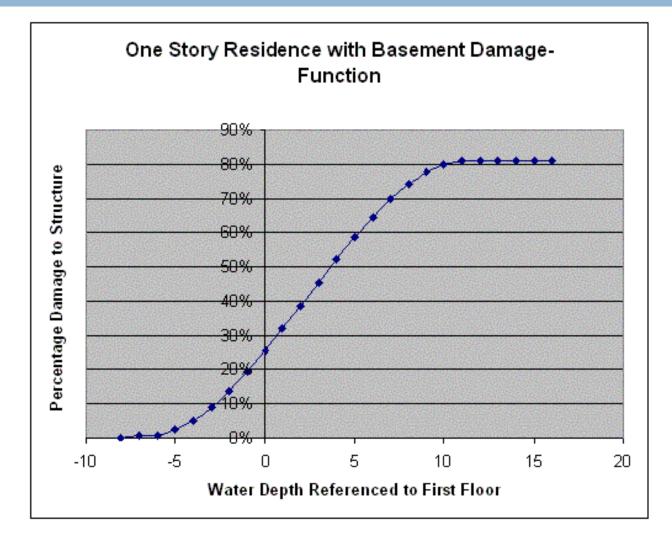

	Estimated Flood	As % of	Estimated	As % of
Flood	Surface Area	Observe	Flood Surface	Observed
Return	(square miles)	d	Area (square	Surface Area
Period	1 Arc-second	Surface	miles)	(46.08 mi ²)
(Years)	DEM	Area	1/3 Arc-	
		(46.08	second DEM	
		mi²)		
100	34.76	75%	33.53	73%
500	37.28	81%	40.16	87%
1000	37.78	81%	40.17	87%


Selected Areas of Comparison


Areas A, B and C

Predicted and Observed Damage

Hazus Predicted Damage


Actual Damage

Pearson's r = 0.45(n=114, p=0.005)

The Hazus Flood Model

- Floods flows are predicted using a log-Pearson Type III regression equation
- These equations are derived for the various states/regions across the US and published by the US Army Corps of Engineers
- These USACE equations are present in Hazus and used to develop stream flows/volumes
- Once flow is predicted, channel topography and a surrounding buffer are used to predict flood extent
- Parameters used to estimate flood damage are depth, elevation and flow velocity, but mostly depth
- Flood model has the ability to be refined using HEC-RAS data

USACE Depth-Damage Curve

Current Research Target: Bridge Scour

- Intent of research is for an easy to use tool for bridge damage assessment
- DOT Hydraulic Engineering Circular 18, "Evaluating Scour at Bridges"
 - Contains equations necessary to calculate scour potential for bridges and their components
- A review of Hazus and the underlying data tables suggest that the data necessary to solve these equations is available through Hazus or the functions available in ArcGIS
- Current phase of research is in developing an interface to identify data in Hazus, link it to a "solver tool" and present results as a portfolio for a given area's bridges

Live Bed Contraction Scour Calculation

$$\mathbf{y}_{s} = \mathbf{y}_{2} - \mathbf{y}_{0}$$

$$\mathbf{y}_2 = \mathbf{y}_1 \left[\left(\frac{Q_2}{Q_1} \right)^{6/7} \left(\frac{W_1}{W_2} \right)^{k_1} \right]$$

Where:

 $y_s =$ average contraction scour depth

 y_0 = average existing depth in contracted section

 $y_1 =$ average depth upstream

 y_2 = average equilibrium depth in contraction after scour

 Q_2 = Flow in contraction (estimated using velocity from Manning and cross section of stream)

 Q_1 = Flow in upstream (estimated using velocity from Manning and cross section of stream)

- W_1 = Bottom width of main channel
- W_2 = Bottom width at contraction

 k_1 is a constant depending on ration of shear velocity to fall velocity (HEC-18, pg 6.10)

Additional Research Potential

- Although predicted flood surface areas are only 13% less than observed, Hazus models do not coincide with the flood extents seen in the 2010 Davidson County flood event
- Preliminary research into the methodology employed by Hazus suggests that
 - The data used in the regression equations may need to be limited to recent history (e.g., 20 years)
 - The regional regression equations used to develop flow may need to be reassessed to determine if they are still appropriate

Publications to Date

- Banks, J., Camp, J., & Abkowitz, M. (2014). Adaptation planning for floods: a review of available tools. Natural Hazards, 70(2), 1327-1337.
- Submitted to Natural Hazards Review
 - Banks, J., Camp, J., & Abkowitz, M.

Scale and Resolution Considerations in the Application of HAZUS-MH to Flood Risk Assessments