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What is a landscape evolution model?
A model of topographic change through time

Lumped Distributed
Sample watershed
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What is a landscape evolution model?

Tucker and Hancock, 2010
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(a) (b) (c)

(d) (e)
(f )

(a) Ivanov et al., 2004; (b) Mitas and Mitasova, 1998; (c) Kessler et al., 2006; (d) Tucker and Hancock, 2010; 
(e) Howard, 2007; (f) Kelfoun et al., 2009

What is a landscape evolution model?
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Limitations in landscape evolution modeling
• Open-source versus proprietary

• Existing models: read-only, high level for entry, highly specific

• Lack of documentation

Efforts to share models and modeling tools: 
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• Eliminate redundancies

• Emphasize flexibility, fundamentals

• ‘Black box’ to developer level

• Training: workshops, one-on-one

Hopefully accelerate scientific progress!

Landlab:A Python toolkit for modeling Earth surface processes
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Landlab:A Python toolkit for modeling Earth surface processes

Contains:
• Gridding library 

• (structured, Voronoi, 
hexagonal, radial…)

• Process components 
• (overland flow, hillslope 

diffusion, soil moisture…)

• Data sharing and handling

• Input / Output utilities
• (NetCDF, ESRI ASCII)

• Plotting utilities
Node Link Cell

Raster grid
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Python environment
Model driver
Import libraries and OverlandFlow
Instantiate raster grid
Instantiate OverlandFlow

Loop through time:
 run gear_time_step()
 run overland_flow()
 update data structures

Visualize and output data

Component
OverlandFlow()
      gear_time_step()
      overland_flow()

Raster Grid
Read in DEM or set by input file
Boundary condition handling
Stores topology and data structures

Model data
shared throughout

Landlab

Landlab:A Python toolkit for modeling Earth surface processes

Most users Developers

set time step

set time step
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Steady-state hydrology: Precipitation

Eagleson, 1978 WRR
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Q  = PA

I = KQmSn

Steady-State Hydrology
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Steady-State Hydrology
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Non-steady Hydrology
Steady-state hydrology: Discharge and channel incision
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Flow Direction

Q, S

Traditional, single direction LEM approach

Qin = Q1 + Q2 Qout = Q3 + Q4

Q1

Q3

Q2 Q4

Flow Directions

Slope = Average of all neighbors

Overland flow (multiple direction) approach

Node
Link
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Flow Direction
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Single Flow Direction Method

Qin = Q1 + Q2 Qout = Q3 + Q4

Q1

Q3

Q2 Q4

Flow Directions

Slope = Average of all neighbors

Overland Flow, multiple direction method

Node
Link

B

A

Flow along one path of steepest descent

Single peak discharge and incision rate

Flow in all directions out of a given node

Changing discharge and incision rate

Q = PA
I = KQmSn

Qh = f(h, S, n)
I = KQh

mSn

Steady-state hydrology: flow routing
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Molnar, 2001, Geology

More arid                       less arid

More arid                       less arid

Less rainfall = larger flood impact

Larger floods = larger discharges

Larger discharges = more incision

Global climate change linked to 
aridity: more erosion

Extreme events Frequent events

Extreme events Frequent events
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Sólyom and Tucker, 2004, JGR
Steady-state Non-steady state

Non-steady discharge:
• Higher peak than steady-state
• Lower valley density
• Convex channel profiles

Non-steady peak

Steady peak
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Coulthard et al., 2012, ESPL

Model behavior dependent on 
hydrodynamic method

Note:
• “Steady” cases calculated using 

Manning’s equation

• CAESAR model allows divergent flow
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∆t = ∆xα √ghf

Non-steady flow routing in Landlab

Hunter et al., 2005, 
Advances in Water Resources

qt+1 =
[θqt + 1-θ (qt, left + qt, right)] - gh∆tSw2

1 + g∆tn2 qt / h7/3

Flood inundation algorithm from de Almeida et al., 2012
de Almeida et al., 2012, WRR

Adaptive time step

q  =  P A
W

Steady-state hydrology
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Model validation
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How does the model behave across different 
basin shapes?

How do non-steady methods scale across 
changing rainfall duration?

…changing rainfall intensities?

Potential real world application of the 
non-steady hydrologic model.

Is steady-state a reasonable assumption for 
long-term landscape evolution modeling?
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(b) Long basin topography

Long

• Same drainage area
• Steady-state topography
• 30 m grid resolution
• Steep slopes (10-1 to 10-2)
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How does this model behave across different basin shapes?

Duration Intensity

2 hr 1.47 mm/hr

Storm Characteristics

Parameterized using Hawk and Eagleson, 1992

Time to peak

Hydrographs at watershed outlet
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How does this model behave across different basin shapes?

Upstream Downstream
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How does this model behave across different basin shapes?

Stream power incision

Normalized by steady-state 
incision rate: neglect erodibility
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How does the model behave across different basin 
shapes?

• Outlet hydrographs reflect basin shape

• Low drainage areas in both basins: discharge,      
incision rates exceed predicted steady-state

Is steady-state a reasonable assumption for 
long-term landscape evolution modeling?
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How does the model behave across different 
basin shapes?

How do non-steady methods scale across 
changing rainfall duration?

…changing rainfall intensities?

Potential real world applications of the non-
steady hydrologic model.

Storm ID Duration Intensity

Shorter duration 1 hr 1.47 mm/hr

Average storm 2 hr 1.47 mm/hr

Longer duration 3 hr 1.47 mm/hr

Is steady-state a reasonable assumption for 
long-term landscape evolution modeling?
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How do non-steady methods scale across changing 
rainfall duration?

• Time to peak discharge in the outlet 
hydrograph inversely related to precipitation 
duration

• Impacts of changing storm duration: higher 
drainage areas

Is steady-state a reasonable assumption for 
long-term landscape evolution modeling?
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How does the model behave across different 
basin shapes?

How do non-steady methods scale across 
changing rainfall duration?

…changing rainfall intensities?

Potential real world applications of the
non-steady hydrologic model.

Storm ID Duration Intensity

Lower intensity 2 hr 0.74 mm/hr

Average storm 2 hr 1.47 mm/hr

Higher intensity 2 hr 2.94 mm/hr

Is steady-state a reasonable assumption for 
long-term landscape evolution modeling?
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How does this model behave across different basin shapes?
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How do non-steady methods scale across changing 
rainfall intensity?

• Time to peak discharge inversely related to 
rainfall intensity

• Higher intensity: exceeds steady-state 
throughout watershed

Is steady-state a reasonable assumption for 
long-term landscape evolution modeling?
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How does the model behave across different 
basin shapes?

How do non-steady methods scale across 
changing rainfall duration?

…changing rainfall intensities?

Potential real world applications of the 
non-steady hydrologic model.

Is steady-state a reasonable assumption for 
long-term landscape evolution modeling?
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Application in a real world setting:
Spring Creek, CO

Burned in the 1996 Buffalo Creek Fire

July 12, 1996: 100- to 1000- year 
recurrence rainfall event
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Elevation (m
)

Application in a real world setting: Spring Creek, CO.

Duration Intensity
2 hr 1.47 mm/hr
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*Note scale 
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Storm duration
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Elevation (m
)



*Note scale 
differences 

Storm duration

Application in a real world setting: Spring Creek, CO.

Elevation (m
)



*Note scale 
differences 

Storm duration

Application in a real world setting: Spring Creek, CO.

Elevation (m
)



*Note scale 
differences 

Storm duration

Application in a real world setting: Spring Creek, CO.

Elevation (m
)



*Note scale 
differences 

Storm duration

Application in a real world setting: Spring Creek, CO.

Elevation (m
)



Application in a real world setting: Spring Creek, CO.
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note:
• steep headwaters: imprint on 

discharge and incision

• ‘small’ test storm –
implications for larger flood 
events? 
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Conclusions
• Overland flow model is sensitive to differences in basin 
shape, storm duration and intensity
• Peak discharge particularly sensitive to rainfall characteristics

• Steady-state hydrology underestimates discharge and 
incision in steep headwaters in synthetic and natural 
basins
• High erosion upstream, lower erosion downstream 

• Choice of hydrologic model in long-term landscape 
models can have implications for basin evolution
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Questions?

Landlab disclaimer: All Landlab functionality described here is in
active development. This presentation reflects the Landlab distribution
as of Wednesday, April 13, 2016. Please refer to the Landlab
documentation for the most up-to-date information.

http://landlab.github.io/#/
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