
Transitioning unique NASA data and research technologies to operations

PERL
PRACTICAL EXTRACTION AND REPORT LANGUAGE

Matt Smith (UAHuntsville / ITSC)

msmith@itsc.uah.edu

Kevin McGrath (Jacobs ESTS)
kevin.m.mcgrath@nasa.gov

1 November 2010

mailto:msmith@itsc.uah.edu
mailto:kevin.m.mcgrath@nasa.gov

Transitioning unique NASA data and research technologies to operations

OUTLINE

 Intro

 Syntax

 Running Perl programs

 Pragmas

 Variables

 Modules

 String manipulation

 Control structures

 File manipulation

 I/O

 Regular expressions

 Subroutines/Functions

 System commands

 Date/Time manipulation

 Csh examples

 External apps

Transitioning unique NASA data and research technologies to operations

INTRODUCTION
 A general-purpose programming language originally developed for

text manipulation and now used for a wide range of tasks including
system administration, web development, network programming,
GUI development, and more.

 Intended to be practical (easy to use, efficient, complete) rather
than beautiful (tiny, elegant, minimal).

 Major features
 Easy to use

 Supports both procedural and object-oriented (OO) programming

 Has powerful built-in support for text processing

 Has one of the world's most impressive collections of third-party
modules

Transitioning unique NASA data and research technologies to operations

WHY PERL?
 It is a complete programming language!

 Still – it’s just another wrench in your toolbox

 Some simple tasks are still QED in c/b/ba/k-shell

 You don’t have to compile and create object files and then execute

 Ability to perform floating-point arithmetic

 Can still do easy file manipulation, like a shell

 There is a MS Windows version, if interested

 Fewer external commands required (use internal perl functions)

 A plethora of libraries (modules) are available

Transitioning unique NASA data and research technologies to operations

SYNTAX

 Leading blank spaces and tabs are ignored

 End a command line with a semicolon ‘;’

 Indenting is good practice, and Smart!

 Variables are case sensitive

 # Comments, but no multi-line comment syntax

 Escape character backslash ‘\’

 Variables always have prefix character ($, @, %)

 Kevin McGrath has a suggested documentation template

 At the SPoRT web site

Transitioning unique NASA data and research technologies to operations

 The “Hello world” script:
#!/usr/bin/perl –w # hash-bang

print “Hello world!\n”; # Speak

 The first line (starting with the “shebang” ‘#!’ interpreter directive)
tells the kernel that this is a perl script and where to find the perl
interpreter

 The -w switch tells perl to produce extra warning messages about
potentially dangerous constructs

 Next, we use ‘print’ to print a string (in quotes) consisting of
printable characters and a newline or linefeed ‘\n’ (0x0A)

 Note the comments – everything to the right of a ‘#’ on a line

 Usually placed in a file with a “pl” extension (e.g., test.pl)

 An exit is implied, though you can return a status code (exit #;)

RUNNING PERL SCRIPTS

Transitioning unique NASA data and research technologies to operations

PRAGMAS
 They turn on/off compiler directives, or pragmas

 E.g.,
use integer; # perform integer math

use strict; # restrict unsafe constructs. Use it!

use strict „vars‟; # strict only for variables

use strict „subs‟; # strict only for subroutines

use warnings; # as opposed to …

no warnings;

use constant PI=>4*atan2(1,1); # argumentless inline func.

 There are many pragmas

Transitioning unique NASA data and research technologies to operations

VARIABLES

 $ for scalars (a single value or string)

 E.g., $a, $Joe54, $my_name

 @ for arrays (list of scalars)

 E.g., @List, @files_to_read, @months

 % for hashes (AKA associative arrays or ‘key/value’ arrays)

 E.g., %mcidas_res, %Coins

Transitioning unique NASA data and research technologies to operations

DEFINING AND USING SCALARS
$name=“Bubba Gump”; # a string

$number=12; # an integer

$avg=3.254; # a float

$total=${amps}**2+$volts; # an expression

$name=${first}.${last}; # „.‟ concatenates strings

$Email=“msmith\@itsc.uah.edu”; # escape the „@‟

 All calculations are performed internally using floats

 Scalars are handled as strings in a string context, and as numbers
in a numeric context

$a=42;

$answer=“The ultimate answer is “ . $answer;

Transitioning unique NASA data and research technologies to operations

DEFINING AND USING ARRAYS (LISTS)
@list=(“Gary”, “Steve”, “Bill”); # strings

@ListOfNumbers=(1..100); # index generator

@odd=(1, 2, 12.34, “Bob”); # odd but fine

@empty=(); # array w/ 0 elements

Accessing arrays is C-like – using brackets [] – and they’re 0-based.
Use $ when dealing with one element of an array.

$odd[2] contains 12.34

They will grow to accommodate new elements. So,
$stations[99]=1000; # generates a 100 element array

When used in a scalar context, an array evaluates to its length. So,
$length=@stations; # length is now 100

Transitioning unique NASA data and research technologies to operations

DEFINING AND USING HASHES
%coins=(Quarter=>25, Dime=>10, Nickel=>5);

my $name=“Dime”;

my $total = $coin{$name} + $coin{Nickel};

$total now contains 15

 Multidimensional hashes
my %goes = (

vis => {band => 1, res => 1, loc=>“GHCC_GE/VIS”},

wv => {band => 3, res => 4, loc=>“GHCC_GE/IR3”});

my $channel = $goes{vis}->{band};

print “GOES-East WV has a res of $goes{wv}->{res} km\n”;

Transitioning unique NASA data and research technologies to operations

SCOPE
 Normally, every variable has a global scope. Once defined, every

part of your program can access a variable.

 When variables are declared with my(), they are only visible
inside the code block. Any variable which has the same name
outside the block is ignored.

$name = “Rover”;

$pet = “dog”;

print “The $pet is named $name\n”; # The dog is named Rover

{

my $name = “Spot”; # local instance of $name

$pet = “cat”; # overwrites $pet defined above

print “The $pet is named $name\n"; # The cat is named Spot

}

print “The $pet is named $name\n"; # The cat is named Rover

Transitioning unique NASA data and research technologies to operations

SCOPE (CONT’D)
 When the use strict pragma is used (highly recommended)…

 Each variable must be declared with either my or our

 Declaring variables using our expands their scope beyond the
block in which they are defined

 Variables must be declared with our if you wish to make them
visible to subroutines. The variables then must be “imported”
into your subroutines (more on that later).

Transitioning unique NASA data and research technologies to operations

MODULES
 Modules expand the number of available functions (in addition to

those “built-in”)

 Near top of code, list modules to use, using this syntax:
use module::name;

 The Comprehensive Perl Archive Network (CPAN)
http://www.cpan.org/ has a huge list of documented modules that
are publicly available.

 Example:
use File::Copy;

copy file1, file2;

move file1, file2;

 Many functions that serve as wrappers for syscalls return true on
success, and undef on failure.

http://www.cpan.org/

Transitioning unique NASA data and research technologies to operations

MORE MODULES
 Some modules are not already installed and require installation by

SysAdmin

 Example modules:
use Math::Trig; # tan, cos, sin, acos, asin, pi, deg2rad, etc.

use Statistics::Basic; # median, mean, variance, stddev, etc.

use File::Basename; # basename, dirname

use Image::Magick; # read, crop, contrast, draw, etc.

use GD; # rectangle,transparent, colorAllocate, Font, etc.

use NetCDF; # open, varget, varput, close, etc.

use Net::FTP; # FTP functions

use PDL::IO:? # various Perl Data Language I/O modules

FITS, GD, Grib, HDF, HDF5, IDL

Transitioning unique NASA data and research technologies to operations

STRING MANIPULATION
 Strings can be stored in any variable type (scalar, array, and hash).

 Enclosed in “quotes” ($ or @ variables are evaluated at run-time)

 Enclosed in ‘apostrophes’ ($ or @ variables are NOT evaluated)

 Dot operator “.” concatenates strings

 Repetition operator ‘x’ repeats

 Use eq/ne/lt/le/gt/ge for string comparisons (not ==/!=/</<=/>/>=)

 Special operators =~ and !~ (later)
$name = $first . “ “ . $last;

$fourSixes = “6”x4; # gives “6666”

@fours = (“4”)x4; # gives a list (array): (“4”, “4”, “4”, “4”)

if ($name eq “Smith”) { $match = 1; }

Transitioning unique NASA data and research technologies to operations

STRING MANIPULATION (CONT’D)
 Concatenating and adding strings and numbers

$a=1; $b=“hello”;

$c=$a.$a; # $c=11 (treats 1 as “1”)

$c=$a+$b; # $c=1 (*hello isn‟t numeric*)

$c=$a.$b; # $c=“1hello” (treats 1 as “1”)

$c=$b+$b; # $c=0 (*hello isn‟t numeric*)

 Leading blanks and trailing non-numerics are ignored

 “ 123.45tom” becomes 123.45

 Functions that expect a numeric will interpret strings as 0

 undef is interpreted as 0

Transitioning unique NASA data and research technologies to operations

STRING MANIPULATION (CONT’D)
 lc(“Hello”) returns “hello” (lowercase)

 uc(“Hello”) returns “HELLO” (uppercase)

 Most string input from STDIN (standard input) and other read
functions end with a newline. This WILL bite you! To remove it,
use chomp:

print “What is your name?\n”;

$name=<STDIN>;

chomp($name);

Note:

STDIN = Standard Input

STDOUT = Standard Output,

STDERR = Standard Error

Transitioning unique NASA data and research technologies to operations

STRING MANIPULATION (CONT’D)
 How to tell if a variable is a number?

 Use an external function in a module (“looks_like_number”)

use Scalar::Util „looks_like_number‟;

print “Enter a number: ”;

while (! looks_like_number(<STDIN>)) {

print “Not numeric, try again: ”;

}

Transitioning unique NASA data and research technologies to operations

SPLIT/JOIN
 @array_variable = split(/separator/, string);

my $data = “Becky Windham,25,female,Madison”;

my @values = split(/,/, $data);

values[0] contains “Becky Windham”

values[1] contains 25

values[2] contains “female”

values[3] contains “Madison”

 If no separator is given, / / (space) is assumed

 If no string is given, $_ is assumed

 Regex example
my @pieces = split(/\d+/, $data); # split on one or more digits

Transitioning unique NASA data and research technologies to operations

CONTROL STRUCTURES: IF
 Very similar to csh and C. elsif and else are optional. Note the

missing “e” in elsif.

$month = `date +%m`;

chomp($month);

if ($month == 1) {

print “The month is January.\n”;

} elsif ($month == 2 || $month == 3) {

print “It‟s February or March.\n”;

} else {

print “It‟s after March.\n”;

}

 and and && are interchangeable, as are or and ||

Transitioning unique NASA data and research technologies to operations

CONTROL STRUCTURES: WHILE & DO
print “How old are you? “;

$a = <STDIN>; chomp($a);

while ($a > 0) { # note optional use of parentheses

print “At one time, you were $a years old.\n”;

$a--;

}

 The opposite of while is until
 do is similar to while, except that the expression is evaluated at the

end of the block. The contents of the do block will be executed at
least once.

$day = 0;

do {

$day++;

print “Processing data for day: $day.\n”;

} while $day < 10; # note optional lack of parentheses

Transitioning unique NASA data and research technologies to operations

CONTROL STRUCTURES: FOR/FOREACH
for ($i = 1; $i <= 10; $i++) {

print “$i\n”; }

for ($j = 0; $j <= 100; $j+=5) {

print “$j\n”; }

@a = (1..4);

foreach (@a) {

$square = $_** 2; # $_ default loop variable

print “The square of $_ is $square\n”; }

@a = (1,2,3,4);

foreach $number (@a) {

$square = $number * $number;

print “The square of $number is $square\n”;}

Transitioning unique NASA data and research technologies to operations

CONTROL STRUCTURES
 last is similar to break statement of C.

 Whenever you want to quit from a loop.

 To skip the current loop use the next statement.

 It immediately jumps to the next iteration of the loop.

 The redo statement is used to repeat the same iteration again.

Transitioning unique NASA data and research technologies to operations

DIE/WARN

 die throws an exception – printing a message to STDERR
open($file, “>tempfile”) or die “error opening tempfile\n”;

 warn doesn’t throw an exception, but still prints a message

 This code:
if ($T_ob > $limit-2) {

print “Temp $T_ob near limit\n”;

}

…can be written as:
($T_ob <= $limit-2) or warn “Temp $T_ob near limit\n”;

Note: „if‟ implied in usage with warn or die

Transitioning unique NASA data and research technologies to operations

OPEN/CLOSE FILES
 open FILEHANDLE, MODE, “filename”

open LOGFILE, “>>log.txt” || die “Cannot open log.txt!”;

 To print to a file, use print FILEHANDLE “ “;

 Use close(FILEHANDLE) to close a file

Mode Operand Create Truncate

Read <

Write > x x

Append >> x

Read/write +<

Read/write +> x x

Read/append +>> x

Transitioning unique NASA data and research technologies to operations

FILE MANIPULATION

 Use unlink to remove files. Returns 1 if successful, 0 if unsuccessful.
unlink(“sample.txt”, $filename, “$dir/$user/tempfile”);

unlink glob(“2010_11*”);

unlink <*.gif>; # quotes optional with < >

foreach (<*.gif>) {

unlink || warn “I‟m having trouble deleting $_”;

}

rename “file23”, $new_file; # if you only want to rename

 To copy or move a file…
use File::Copy;

copy “log.txt”, $newFile;

move $file, “${SPoRT_ADAS_DIR}/$newfile”;

Transitioning unique NASA data and research technologies to operations

FILE AND DIRECTORY TESTS
 To test if a file or directory exists, use if (-e $filename). Returns

a true-false condition.

 Other useful tests:

File Test Meaning File Test Meaning

-e File or directory is exists -l Entry is a symlink

-r, -w File or directory is
readable/writable

-T File is “text”

-z File exists and has zero size -B File is “binary”

-s File exists and has nonzero size -M Modification age in days

-d Entry is a directory -A Access age in days

Transitioning unique NASA data and research technologies to operations

FILE STATUS
 To get detailed information about a file, call the stat function.

Time is in seconds since the epoch and size is in bytes.

($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,$atime,$mtime,

$ctime,$blsize,$blocks) = stat($fileName);

or
($size,$mtime) = stat($fileName)[7,9];

 The File::Stat module is a by-name interface to the stat function:

use File::stat;

$status1 = stat($fileName1); $status2 = stat($fileName2);

$ageDiff = $status2->mtime - $status1->mtime;

print “$fileName2 is $ageDiff seconds older than fileName1”;

Transitioning unique NASA data and research technologies to operations

READING TEXT FILES

 To read a text file line-by-line, you can use:
my @lines = <FILEHANDLE>;

 Alternatively, you could process the file line by line using…
while (<FILEHANDLE>)) {

print “Processing $_”;

}

or
while (my $line = <FILEHANDLE>) {...}

 Remember you may want to chomp each line!

Transitioning unique NASA data and research technologies to operations

TERMINAL INPUT

 <STDIN> can be abbreviated by using simple <>. By declaring a
scalar variable and setting it equal to <STDIN> we set the variable
equal to whatever will be typed by a user at the command prompt.

print "What is the radius of the circle? ";

$r=<>; # chomp not required in numeric context

$diameter = (2 * $r);

$area = (3.14 * ($r ** 2));

$cir = $diameter * 3.14;

print “ Radius: $r\n Diameter: $diameter\n Circumference:

$cir\n Area: $area";

Transitioning unique NASA data and research technologies to operations

COMMAND LINE ARGUMENTS
 Command line arguments are stored in the @ARGV array

 Access the elements as you would any other array ($ARGV[0])

 $#ARGV to examine the size of the array

 Example code:
my $channel = $ARGV[0] || die “No argument passed!\n”;

print “Processing GOES $channel data…\n”; }

 Executing the code:
cmd> goesImager.pl IR

 Returns:

Processing GOES IR data…

Transitioning unique NASA data and research technologies to operations

BINARY I/O
my $val; # scalar for storing data

my @r, @g, @b; # arrays for r, g, b

open(OUTP, “>output.fil”); # open output file

binmode OUTP; # place OUTP in binary mode

. . . # fill RGB arrays with 256 values

$val=pack('L', 0x80808080);# pack McIDAS missing data value

print OUTP $val; # write to OUTP

$val=pack('N256', @r); # pack values into Red array

print OUTP $val; # write Red array to OUTP

. . . # pack & write G & B arrays

. . .

$val=pack('N48', 0); # pack 48 Reserved words - empty

print OUTP $val; # write to OUTP

Transitioning unique NASA data and research technologies to operations

PRINT/PRINTF
$number = "5";

$string = "Hello, PERL!";

$float = 12.39;

$ddd = 9;

$nothing = undef; # assign an empty (undefined) value

print "$number\n"; # 5

print "$string\n"; # Hello, PERL!

print "$float\n"; # 12.39

printf "Value:%8.4f\n", $float; # Value: 12.3900

$doy = sprintf ("%03d", $ddd);

print "Day of Year = $doy\n"; # Day of Year=009

print "There is nothing: $nothing\n"; # There is nothing:

Transitioning unique NASA data and research technologies to operations

REGULAR EXPRESSION EXAMPLES
 Complex string comparisons

if ($string =~ m/sought_text/) # m is the "match" operator.

 Complex string selections

if ($string =~ m/whatever(sought_text)whatever2/)

$soughtText = $1;

 Complex string replacements

$string =~ s/originaltext/newtext/; # s is the "substitute"

operator.

 Parsing based on the above abilities

if (“20100501_T_212.grib” =~ m/^20100501_(.)_212.grib$/) #true

Transitioning unique NASA data and research technologies to operations

SUBROUTINES/FUNCTIONS
 sub NAME BLOCK

 Use all lower case names (suggestion)

 BLOCK is code within braces { }

 Arguments may be passed

print_greeting(“The year is”, 2010);

sub print_greeting {

$string = $_[0]; # Grab passed arguments

$year = $_[1];

print ”$string $year\n”; # Prints “The year is 2010”

}

Transitioning unique NASA data and research technologies to operations

SUBROUTINES/FUNCTIONS
 An our declaration declares a global variable that will be visible

across its entire lexical scope, even across package boundaries. To
use global variables in a subroutine while using strict, you must
“import” them.

#!/usr/bin/perl –w

use strict;

{ our $name = "Kevin";

our $office = 3031;

printinfo(); # Call subroutine printinfo

}

sub printinfo {

Use the following variables defined in the main block

use vars qw($name $office); # Or use vars (“$name”, “$office”);

print “ Name: $name\n Office: $office\n“;

}

Transitioning unique NASA data and research technologies to operations

SYSTEM COMMANDS
There’s more than one way to skin a cat.

 System command (returns command status)

$stat = system(“mv out.dat /tmp/junk”);

 Backticks (returns command’s output)

$output = `imglist.k GHCC_GE/IR4 | grep “18:45”`;

 Many Perl methods can replace system commands

@list = <*.dat>; # Use instead of @list = `ls *.dat`

 Some security risks exist with non-Perl system calls

Transitioning unique NASA data and research technologies to operations

DATE / TIME MANIPULATION
 use Date::Manip; # full set of functions (quicker subsets exist)

$ddd = Date_DayOfYear($mm, $dd, $yyyy);

 Default date format is yyyymmddhh:mm:ss

$date = ParseDate(“2nd Sunday in 2011"); # returns yyyymmddhh:mm:ss

$date = ParseDate(“39 minutes ago"); # returns yyyymmddhh:mm:ss

$future = DateCalc($date, “12 hours later");# 12 hours from $date

$past = DateCalc($date, -30:00:00); # 30 hours before $date

(Did you know that the Unix date command can act similarly?)

 Determine delta between two dates/times

$diff=DateCalc($date1, $date2); # Returns “y:m:d:h:m:s”

 Increment a date/time

 Use/convert/compare almost any date/time format

Transitioning unique NASA data and research technologies to operations

CSH EXAMPLES
 Environment variables

 Getting
$path = $ENV{“PATH”};

 Setting
$ENV{“PATH”} = $path . “:/home/kmcgrath/mcidas/data”;

 Running external Perl scripts
do “/data/user/setEnv.pl” || die “Error\n”;

 Change working directory
chdir($dataDir);

Transitioning unique NASA data and research technologies to operations

FTP EXAMPLE
The Net:FTP module implements a simple FTP client in Perl. Methods
return true or false to indicate operation success.

use Net::FTP;

$ftp = Net::FTP->new(“ssd.nesdis.noaa.gov”, Passive => 1);

$ftp->login($ftpUser, $ftpPassword);

$ftp->binary();

$ftp->get($remoteFile, $localDir/$file) || die “get failed ” .

$ftp->message;

$ftp->quit();

Transitioning unique NASA data and research technologies to operations

MCIDAS EXAMPLE
You can execute many McIDAS commands as system commands (e.g.,
imglist.k) and gather output returned, but screen manipulation (e.g.,
FRMSAVE) requires a McIDAS session – via mcenv.
Note: McIDAS commands need POSITIONAL PARAMETERS and
KEYWORDS to be in all-caps, but not the executable name itself.)

$output = `mcenv -f 600x844 -e 10m -g 8 -i 240 << EOC

imgdisp.k GHCC_GE/IR4 MAG=-1 -2 LAT=$lat $lon

map.k VH

frmsave.k X $gifName FORM=GIF

exit

EOC`;

print $output;

Transitioning unique NASA data and research technologies to operations

EMAIL EXAMPLE

#!/usr/bin/perl -w

my $recipients = "msmith\@itsc.uah.edu kevin.m.mcgrath\@nasa.gov";

my $subject = "Perl test";

my $product = “LIS 12-Hour Forecast”;

my $status = `/bin/mail -s "$subject" $recipients << EOF

This is the body of the email.

The $product isn‟t updating.

EOF`;

if ($status ne "") {

print "error with mail\n";

exit 1;

}

Transitioning unique NASA data and research technologies to operations

WEB SITES FOR HELP

www.perl.com

www.perl.org

perlmonks.org

perldoc.perl.org

www.tutorialspoint.com/perl

www.perltutorial.org

www.tizag.com/perlT

