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Abstract

An optimal deconvolution (ODC) technique has been developed to estimate microwave brightness temperatures of agricultural fields

using microwave radiometer observations. The technique is applied to airborne measurements taken by the Passive and Active L and S band

(PALS) sensor in Iowa during Soil Moisture Experiments in 2002 (SMEX02). Agricultural fields in the study area were predominantly

soybeans and corn. The brightness temperatures of corn and soybeans were observed to be significantly different because of large differences

in vegetation biomass. PALS observations have significant over-sampling; observations were made about 100 m apart and the sensor

footprint extends to about 400 m. Conventionally, observations of this type are averaged to produce smooth spatial data fields of brightness

temperatures. However, the conventional approach is in contrast to reality in which the brightness temperatures are in fact strongly dependent

on land cover, which is characterized by sharp boundaries. In this study, we mathematically deconvolve the observations into brightness

temperature at the field scale (500–800 m) using the sensor antenna response function. The result is more accurate spatial representation of

field-scale brightness temperatures, which may in turn lead to more accurate soil moisture retrieval.

D 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Microwave brightness temperatures (TB) have been used

effectively for soil moisture retrieval (Engman & Chauhan,

1995; Jackson, 1993; Jackson et al., 1999, 1995, 1997b,

1997a; Jackson & Schmugge, 1989; Laymon et al., 1999,

2001). Several airborne sensors have been used for measur-

ing received energy in various wavelengths including L

(f 1.4 GHz), S (f 2.5 GHz) and C (f 7 GHz) bands.

Typically, the instantaneous field of view (IFOV) of these

sensors is significantly greater than the spacing between

adjacent footprints, i.e. the target surface is over-sampled.

Creating gridded data on spatial scales finer than the IFOV

from the sensor observations results in significant smooth-

ing. In this study, a technique is developed that exploits the

over-sampling to provide accurate field-scale estimates of

TB that exhibit heterogeneity and distinct boundaries con-

sistent with the landscape. The brightness temperatures
0034-4257/$ - see front matter D 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.rse.2004.02.019

* Corresponding author. Tel.: +1-256-961-7903; fax: +1-256-961-7304.

E-mail address: Ashutosh.Limaye@msfc.nasa.gov (A.S. Limaye).
estimated from this technique will subsequently allow more

accurate retrieval of field-scale soil moisture.

The analysis presented here is based on data collected

during Soil Moisture Experiments in 2002 (SMEX02) con-

ducted in the summer of 2002 around Ames, IA (Cosh et al.,

2004 this issue; http://hydrolab.arsusda.gov/smex02/).

Ground sampling teams made daily measurements of soil

moisture and temperature and periodic measurements of

vegetation parameters at selected predetermined sites. The

experiment was conducted with the principle goal of

validating brightness temperatures and soil moisture retriev-

al algorithms using data from the Advanced Microwave

Scanning Radiometer for the Earth Observing System

(AMSR-E) launched in May 2002. In support of this effort,

several passive and active microwave instruments on air-

craft were deployed to measure microwave emissions at

higher resolution. One such sensor was the Passive and

Active L and S band (PALS) microwave instrument, a dual

polarization sensor flown over the watershed study area

(Wilson et al., 2001). Analysis of individual PALS mea-

surements reveals gradual smoothing of observed values in

adjacent observations. When overlaid with the land cover
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classification, the transitions in PALS brightness tempera-

ture between soybean and corn are seen to be gradual, in

contrast to the almost binary SMEX02 landscape. Corn and

soybean vegetation water content were significantly differ-

ent during the study period. The average vegetation water

content for corn was approximately 4 kg/m2, whereas the

average for soybeans was 0.5 kg/m2. Vegetation water

content variability within the same crop type was much

smaller than the between-crop type differences (Anderson

et al., 2004 this issue). Therefore, the corn or soybean

within-field TB variability is expected to be much lower

than the between-field variability. Smoothing occurs due to

the sensor antenna response function, since each observa-

tion covers more than one field and adjacent observations

have varying contributions from those land cover types.

Conventional interpolation techniques rely on the value of

adjacent observations as the basis for interpolation. The

two most commonly used interpolation techniques, inverse

distance weighted interpolation (IDW) and Kriging

(Maidment, 1993), produce comparable interpolation

results for PALS observations; IDW is used in this analysis

to represent the conventionally interpolated TB. IDW

interpolation is simply two-dimensional linear interpolation

in which the weights applied to each observation are

inversely related to the distance from the point at which

the interpolated value is being calculated. Use of these

interpolation schemes without correcting for the antenna

pattern results in a smooth brightness temperature field with

suppressed between-field variability, in contrast to reality in

which the brightness temperatures have sharp boundaries at

the intersection of fields of different vegetation types. This

was the motivation for exploring a different approach to

improve the mapping and gridding of airborne microwave

brightness temperature observations. Our approach is to

impose the sensor antenna response function on the land

surface and to extract individual land cover contributions to

every observation, thereby mapping TB at the scale of the

agricultural fields and preserving the strong between-field

variability. This approach has some similarities to those

described by Long and Daum (1998) and Poe (1990), but is

developed here for specific application to situation in which

the spatial boundaries of contributing emitting sources are

known a priori. This application requires over-sampling

whereby the mean distance between the microwave obser-

vations is shorter than the length of the typical agricultural

field, so that on average there are multiple observations per

field.
2. Study area and data

2.1. Study area

The Walnut Creek study area overflown by PALS was

approximately 300 km2. During the first half of the exper-

iment (10 days), soils in the study area were dry (volumetric
water content 8–10%). Variable rainfall amounts in the

study area on July 5–6 increased the moisture content to

15–25%. Daily soil moisture measurements were made at

selected locations throughout the study area. Vegetation

properties were also measured at different times during

the experiment at those locations. In this analysis, data

from July 2 are used to represent dry conditions, whereas

data from July 7 are used for wet conditions. Results for

July 7 are emphasized because it followed scattered rainfall

in the study area, resulting in high spatial variability of soil

moisture.

2.2. PALS data

The PALS microwave instrument is a recent contribution

to the inventory of aircraft-based instruments. The passive

instrument operates at L band (1.41-GHz radiometer) and S

band (2.69-GHz radiometer) with dual polarization and an

incidence angle of 45j. Data from the passive L band

horizontal polarization are used in this paper. The instrument

is flown on a C-130 aircraft, with the antennas viewing out the

rear door directed downwards and to the rear of the aircraft.

The instrument is non-scanning, thus a single-footprint track

is sampled along the flight path. During SMEX02, PALS data

were collected along 11 flight lines in the Walnut Creek

region south of Ames, IA on 8 days between June 25 and July

8, 2002. The flying altitude of the aircraft was 1162 m, with

variations limited to just a few meters for all of the observa-

tions on all days. The PALS brightness temperature observa-

tions were spaced about 100 m apart (after calibration

preprocessing). The footprint of each observation was ellip-

tical, measuring about 350 m across track and 450 m along

track (for L-band) at half power beam width.

2.3. Land cover classification

Land cover characterization was performed using Land-

sat Enhanced Thematic Mapper scenes from May 14, July 1

and July 17, 2002. A tassel cap transformation was per-

formed on the July 1 image and a standard NDVI with red

and near-infrared bands was computed using the May 14

and July 17 images. The three output bands of the tassel cap

transformation and the two NDVI images were used to

partition the land surface into objects based on spatially

contiguous spectral characteristics. The objects are referred

to as ‘segments’ based on scale and similarity criteria

defined by the image analyst. For this investigation, seg-

ments were defined to represent agricultural fields. The

typical corn or soybean field dimension is 500–800 m.

Subsequently, the segments were classified using the tassel

cap transformation and two NDVI images with equal

weight in a supervised classification with 11 classes, with

the two dominant classes, corn and soybeans, constituting

over 80% of the area covered by PALS observations. The

classification was verified to be 100% accurate at 31 study

sites in the PALS mapping area.
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3. Optimal deconvolution method

The optimal deconvolution (ODC) method consists of

three steps. The first step is to approximate the sensor

antenna response function on the plane normal to the beam

axis. The second step is to project this function onto the

horizontal (Earth) surface and to calculate the volume under

this surface for each land cover segment within the sensor

footprint. Finally, a solution of an overdetermined system of

equations is found by minimizing the mean absolute differ-

ence between ODC-estimated and observed brightness tem-

peratures. Details of the technique are provided in the

following sections.

3.1. Sensor antenna response function over the land cover

segments

The basic assumption of this technique is that sensor-

observed brightness temperatures (or ‘antenna tempera-

tures’) are linear combinations of the contributing land cover

segments, expressed as a two-dimensional spatial convolu-

tion of the sensor antenna response function with the actual

brightness temperature distribution (Ulaby et al., 1986). The

emitted energy contributions of each segment are therefore

not treated as uniform, but rather as functions of the sensor

antenna response function and the proportion of the segment

that is within the footprint. Under the approximation (for

simplicity) that the antenna response function can be rea-

sonably well represented by a Gaussian surface, the volume
Fig. 1. Illustration of the projection of the antenna resp
under the surface covering each segment can be integrated to

estimate the true contribution of that segment to the overall

sensor observation.

The PALS S-band antenna response function is given by

Wilson et al. (2001). S-band half power beam width (3 dB

beam width, from which approximately 50% of the power is

received) is approximately 13j. Since the L- and S-band

instrument antennas are scaled versions of one another, L-

band half power beam width can be approximated to 12j
(based on L-band wavelength of 21.3 cm and aperture

diameter 100 cm, 3-dB beam width in radians for the L-

band conical horn can be approximated by the ratio of

wavelength and aperture diameter). A Gaussian function

can be used as a reasonable approximation to the shape of

the response function close to the beam axis. Because PALS

has an incidence angle of 45j, each point on the horizontal

surface must be projected onto the beam-normal plane. Fig. 1

illustrates the projection of the Gaussian function from the

beam-normal plane to the assumed horizontal Earth surface.

The Gaussian surface has radial symmetry on the beam-

normal plane; therefore, the power received at the sensor

(P(r)) from any point at a radial distance r from the beam

axis on the beam-normal plane is given by:

PðrÞ ¼ 1

r
ffiffiffiffiffiffi
2p

p e
�r 2

2r2 ð1Þ

The Gaussian function has only one parameter, the

variance (r2). From the beam width and sensor altitude, r
onse function onto the horizontal Earth surface.
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can be computed for any point on the beam-normal plane

and Eq. (1) can be solved for r2.

Defining the origin of our 3-D space as the point where

the beam axis intersects the horizontal (Earth) surface, the

sensor location becomes (Xs, 0, H) where

Xs ¼ H tan/ ð2Þ

where H is the altitude of the sensor and / is the sensor

incidence angle. The equation for the plane through the

origin and normal to the beam is given by:

XsX þ HZ ¼ 0 ð3Þ

Substitution from Eq. (2) yields:

X tan/ þ z ¼ 0 ð4Þ

Any arbitrary point (X1, Y1, 0) on the horizontal surface

can be projected onto the beam-normal plane at (Xp, Yp, Zp)

by solving the system of equations defined by Eq. (4) and

the parametric representation of the vector from the sensor

location (Xs, 0, H) to the arbitrary point (X1, Y1, 0). This

yields the following solution:

Xp ¼
HX1

H þ ðXs � X1Þtan/
ð5Þ

Yp ¼ Y1 1þ X1tan/
H þ ðXs � X1Þtan/

� �
ð6Þ

Zp ¼
�HX1tan/

H þ ðXs � X1Þtan/
ð7Þ

The distance r of any point (Xp, Yp, Zp) on the beam-

normal plane to the origin is then given by:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp2 þ Yp2 þ Zp2

p
ð8Þ

To compute the total volume under the Gaussian

surface, the irregular land cover segments in the sensor

field of view are discretized over a fine (10 m) resolution

grid on the horizontal plane with the center of the beam as

the origin (Fig. 1). The corners of each grid cell are

projected to the beam-normal plane using Eqs. (5)–(8),

and the areas of all cells on the beam-normal plane are

computed. The Gaussian function (Eq. (1)) gives the

weights for each cell on the beam-normal plane. These

weights are normalized with the corresponding beam-

normal cell areas since those on the beam-normal plane

are not constant, even though the corresponding cells on

the horizontal plane are of equal area. The extent of the 10

m grid is defined so as to cover 90% of the sensor power

returned. At the PALS altitude of 1162 m and incidence

angle of 45j, the grid on the horizontal plane extends to

approximately 350 m radius in the beam-normal plane,

resulting in an ellipse of along-track radius of 520 m and

across-track radius of 350 m.
3.2. Determining an optimal solution

In order to co-locate the land cover segments and PALS

observations, each is mapped to the same fine resolution

grid. These PALS observations are referred to here as

‘postings’. Even though each posting is associated with a

point on the ground where the beam intersects the surface, it

is important to note that each posting represents the obser-

vation made by the sensor within its field of view. All the

cell weights within a segment are integrated to determine the

segment’s fractional contribution to the individual posting.

These segment-fractional contributions, normalized over all

the integrals within the field of view, give what is termed as

a segment Gaussian fraction (ranging from 0 to 1). Over-

sampling in the observations allow several PALS postings to

cover the same land cover segments, but with varying

Gaussian fractions. Therefore, we can deconvolve the ob-

served sensor brightness temperatures into segment bright-

ness temperatures by simultaneously solving the

neighboring PALS postings with the corresponding contri-

butions from the land cover segments. The synthesized or

ODC-reconstructed sensor brightness temperatures are cal-

culated as the summation of all brightness temperatures

from contributing segments multiplied by their respective

Gaussian fractions. Because there are more equations (num-

ber of postings) than unknowns (segment TB), there is no

unique solution. Therefore, an ‘‘optimal’’ solution is defined

to minimize the difference between the ODC-reconstructed

brightness temperatures and the postings. The optimization

problem is defined by the objective function:

Minimize
XAll PALS postings

AODC reconstructed posting TB

� observed posting TBA

ð9Þ
where:

ODC reconstructed posting TB

¼
XAll underlying land cover segments

ðGaussian fractionÞ
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4. Results

4.1. Comparison of PALS observed brightness temperatures

with ODC-reconstructed postings

The accuracy of the optimization algorithm can be easily

demonstrated by comparing PALS-observed brightness tem-

peratures with ODC-reconstructed postings. Fig. 2 shows a

comparison of ODC-reconstructed brightness temperatures

with observed L band horizontally polarized postings for

July 2 and July 7, representing dry and wet conditions,

respectively; related statistics are given in Table 1. The
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Fig. 2. Comparison of ODC-reconstructed posting L band H polarization brightness temperatures with PALS-observed TB for dry and wet conditions on July 2

and July 7, 2002, respectively.

Table 1

Statistics of observed and ODC-reconstructed postings for July 2 and July

7, 2002

Reconstructed

postings,

July 2

Observed

postings,

July 2

Reconstructed

postings,

July 7

Observed

postings,

July 7

Mean 276.40 276.40 244.05 243.99

Min 235.39 239.09 202.63 196.75

Max 286.34 286.03 273.40 273.58

Standard

deviation

4.84 4.88 12.72 12.90

R2 0.97 0.97

MAE 0.51 1.19

RMSE 0.90 2.06

T-test w/

observed

Not a

statistically

significant

difference

Not a

statistically

significant

difference
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mean absolute errors (MAE) for the 2 days are 0.51 and

1.19 K; the R2 values are 0.97 for both days and the root

mean square errors (RMSE) are 0.90 and 2.06 K, respec-

tively. The means of the ODC-reconstructed brightness

temperatures were not found to be statistically different

from the postings.

4.2. Verification of ODC estimates

The ideal validation of ODC estimates would be with

respect to independent TB observations. In the absence of

such measurements, we defined a proxy with a subset of

the PALS observations in which the Gaussian fraction is

greater than 0.95. We refer to these observations as

‘‘pure’’ postings because over 95% of the contribution

is from a single segment. A ‘pure postings segment TB’

is defined as the mean of all pure postings contained in

the segment, the value of which is deemed to be the best

estimate of the brightness temperature of that field. Such

postings provide significant detail about the segment.

However, in order to perform an independent verification

of the ODC approach, we repeated the analysis with pure

postings omitted, thereby isolating the pure postings

subset for verification. The ODC-estimated segment TB

(without the pure postings) for all of the days PALS was

flown in July 2002 (dates: 1, 2, 5, 6, 7 and 8) are

compared with pure posting segment TB in Fig. 3. Also

shown in Fig. 3 are segment TB obtained by applying

IDW interpolation to PALS observations. It is clear that

the ODC results are in a better agreement with pure

postings segment TB. The IDW smoothing can be noticed
in the overestimation at lower brightness temperatures

(soybeans) and underestimation at higher values (corn).

The associated statistics for corn and soybeans are shown

in Table 2. Means, minima, maxima and variances for

ODC and pure postings segment TB are similar, whereas

IDW results in under- or overestimation of TB in higher

or lower ranges, respectively. The means of ODC-esti-

mated segment TB are statistically similar to the pure

postings segment TB while that is not true for IDW-

estimated segment TB. Mean absolute error (MAE) and

root mean square error (RMSE) are significantly lower for

ODC-estimated segment TB than for IDW-estimated seg-

ment TB.
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Fig. 3. Validation of ODC segment L band H polarization brightness temperatures, compared with segment averages derived from pure postings for all the days

in July on which PALS was flown. In this application, the ODC analysis was performed with the pure postings omitted.
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Pure postings represent a small portion of all postings,

since they must be located near the center of a large

segment. The other postings cover a heterogeneous mix of

contributing segments within their footprints. To verify the

efficacy of the technique over heterogeneous areas, ran-

domly selected ODC-reconstructed postings were com-

pared with the corresponding observed postings. This

verification can be done only for the posting and not for

the segments since a non-pure posting has contributions

from more than one land cover type. One hundred ob-

served postings were randomly omitted, one at a time, and

the ODC analysis was performed. In this way, the verifi-

cation data set is kept distinct from the analysis data set.

The ODC-reconstructed posting estimates were then com-

pared with the omitted observed postings. Fig. 4 shows the

plot of ODC-reconstructed postings compared with the

withheld observations for July 7. The observed omitted

postings agree well with the ODC-reconstructed postings
with an R2 of 0.98, an MAE of 1.32 K and an RMSE of

1.88 K (Table 3).

4.3. Comparison of ODC versus inverse distance weighted

brightness temperature estimates

We illustrate the differences between the ODC and

IDW brightness temperature estimates by plotting a tran-

sect corresponding to a part of a single flight line on July

7 (Fig. 5). The figure clearly illustrates the smoothing

effect of interpolation that is particularly evident at land

cover boundaries. The lower part of the figure shows

PALS postings along with IDW- and ODC-estimated TB

along the flight line. By definition, the PALS observations

and IDW-interpolated estimates have identical values. The

large difference between corn and soybean TB is obvious

across the transect. The observed and IDW-interpolated

TBs clearly illustrate the smoothing caused by the con-
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Table 2

Comparison of corn and soybean ODC and IDW segment TB estimates

with segment averages derived from ‘pure’ PALS postings on all days

PALS was flown in July

Pure ODC w/o pure IDW

Corn

Mean 269.97 269.59 262.99

Min 240.20 243.88 239.27

Max 284.58 284.35 281.71

Standard

deviation

8.92 9.00 11.81

R2 0.88 0.78

MAE 2.25 7.21

RMSE 3.19 8.85

T-test w/ pure Not a statistically

significant difference

Statistically

significant difference

Soybeans

Mean 244.79 244.32 250.8

Min 206.52 206.38 223.88

Max 279.99 279.34 280.28

Standard

deviation

21.22 20.76 17.46

R2 0.96 0.86

MAE 2.71 6.29

RMSE 4.10 8.56

T-test w/ pure Not a statistically

significant difference

Statistically

significant difference
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tributions from neighboring land cover segments within

the sensor footprint. In other words, the transition be-

tween crop types is more gradual in the observed and

IDW-interpolated estimates. In contrast, ODC-estimated

TBs preserve the sharp boundaries between different land

cover types. Thus, the dynamic range of brightness

temperatures between corn and soybeans is more pro-
Fig. 4. Comparison of ODC-reconstructed brightness tempe
nounced with the ODC estimates than with the IDW

estimates.

The effect of smoothing by interpolation can also be

seen clearly in Fig. 6, which shows a spatial comparison of

IDW interpolated estimates with ODC. IDW-estimated TBs

(panel D) are computed over the same 10 m grid that is

used in the ODC analysis and averaged for each segment

(panel C). Thus, the ODC-estimated segment TBs (panel

B) in comparison with IDW-estimated segment mean TBs

show that the IDW method yields a smaller difference

between corn and soybeans (as seen in Fig. 5). The spatial

structure of corn and soybean segments can also be

deciphered in the ODC-estimated segment TB, whereas

IDW grid or segment average interpolations are smooth

and lack clarity.

Segment mean TB from corn and soybeans estimated in

both the ODC and IDW methods are from statistically

distinct populations. However, the separation in IDW

estimates of corn and soybean TB during both dry and

wet conditions is much smaller than that seen in ODC

estimates. The improved ODC-estimated segment mean

TB should potentially lead to better field scale soil

moisture estimation. Evaluation of the improvement in soil

moisture estimation involves treatment of retrieval algo-

rithms, in situ data quality and sampling and data regis-

tration issues. This evaluation is important and is the

subject of ongoing collaborative studies using the

SMEX02 data.
5. Summary and discussion

The ODC technique uses the sensor antenna response

function of a microwave remote sensor to deconvolve the
ratures with omitted PALS postings for July 7, 2002.
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Table 3

Statistics of ODC-reconstructed posting TB estimates with respect to

observed PALS postings omitted in this ODC analysis for July 7, 2002

ODC-reconstructed

postings

Omitted

observed postings

Mean 244.26 244.02

Min 205.67 203.20

Max 272.11 271.80

Standard deviation 13.53 13.84

R2 0.98

MAE 1.32

RMSE 1.88

T-test w/ Obs Not a statistically

significant difference
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observed brightness temperature into segment brightness

temperatures. This technique can be applied to a regular

grid or, as in this analysis, to an irregular land cover pattern

of agricultural fields (segments). The technique was used to

estimate field-scale brightness temperatures that we show to

be more realistic and more accurate than conventional

interpolation techniques in two ways. First, ODC-estimated

TBs were shown to correlate better with PALS pure postings

segment TB than with IDW-estimated segment TB. Pure

postings were omitted from this analysis and used as the

independent verification source. ODC estimated segment
Fig. 5. Transect of PALS postings, land cover segmentation, IDW interpolation
TB were also shown to better characterize the dynamic

range of brightness temperatures between corn and soybean

fields, while interpolated TB unrealistically suppress the

dynamic range between contrasting fields. Such increased

fidelity in brightness temperature estimation may lead to

improved field scale soil moisture retrieval.

Successful application of the ODC technique in this

study can be attributed to observation over-sampling, large

segments with relative homogeneity, and significant bright-

ness temperature contrast among land cover components.

The ODC technique can be of significant help in refining

soil moisture retrieval algorithms compared to conventional

interpolation methods that tend to smooth the transition

between objects in a heterogeneous data field and suppress

the overall dynamic range of the data. The ODC technique

can also be effectively applied to other airborne microwave

sensors supporting validation work in field experiments

such as SMEX02.

Results of the analysis using only PALS L band hori-

zontal polarization are presented in this paper. However, in

addition to the L band horizontal polarization, we have also

performed ODC analysis on L band vertical polarization.

Brightness temperatures from vertical polarization show

higher TB values, but the trends are similar. Likewise,

similar conclusions can also be made from S band data.
and underlying segment ODC brightness temperatures for July 7, 2002.
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Fig. 6. ODC segment TB, IDW interpolated L band H polarization brightness temperatures averaged over each segment, and IDW estimates on a 10 m grid for

the SMEX02 watershed study area on July 7, 2002. Yellow in the segments represent corn, whereas green in the segments represents soybeans.

A.S. Limaye et al. / Remote Sensing of Environment xx (2004) xxx–xxx 9
Thus, the results from vertical polarization or the S band

data are not presented for the sake of brevity.

Further research will examine the application of the

ODC technique to space-based microwave sensors. It is

possible that the application of the ODC technique is

limited to conditions where the TB heterogeneity between

grid cells (analogous to segments in this analysis) is

greater than it is within each cell. ODC can be used to

estimate TB for land surface areas on a regular grid as

long as the grid cell dimension is greater than the mean

distance between remote sensing observations (postings).

This requirement leads to over-sampling of the cell by

adjacent observations. With regards to the Advanced

Microwave Scanning Radiometer for EOS (AMSR-E) on

the Aqua satellite, the spacing between adjacent observa-

tions is 10 km whereas the AMSR-E IFOV extends

approximately 75 km along track and 45 km across track.

Therefore, ODC can be applied to AMSR-E on a 20–25

km grid, which is comparable to the 25 km EASE grid on

which the AMSR-E brightness temperature and soil mois-

ture products are currently averaged (using a method

analogous to IDW in this analysis). Although results have

not yet been evaluated, application of ODC to AMSR-E

data may result in improvements over the current aver-

aged TB reported for the EASE grid. It is likely that the

application of the ODC technique to AMSR-E data will

be useful to extend spatial coverage in the vicinity of

shorelines of large water bodies. Near shorelines, the large

sensor IFOV includes the water body with lower TB and

the land area with typically higher TB. This renders

useless any averaged observations within some distance

of the coastline (roughly the dimension of the IFOV, or

two to three IFOV depending on the accuracy required).

This situation is analogous to the analysis presented in

this paper where soybeans and corn vegetation biomass

(and therefore microwave brightness temperatures) are

significantly different. Thus, for a water body larger than
the spacing between the observations, ODC can extract

the shoreline with better clarity than the existing obser-

vations.
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