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Abstract 
 

An optimal de-convolution (ODC) technique has been developed to estimate 

microwave brightness temperatures of agricultural fields using microwave radiometer 

observations.  The technique is applied to airborne measurements taken by the Passive 

and Active L and S band (PALS) sensor in Iowa during Soil Moisture Experiments in 

2002 (SMEX02).  Agricultural fields in the study area were predominantly soybeans and 

corn.  The brightness temperatures of corn and soybeans were observed to be 

significantly different because of large differences in vegetation biomass.  PALS 

observations have significant over-sampling; observations were made about 100 m apart 

and the sensor footprint extends to about 400 m.  Conventionally, observations of this 

type are averaged to produce smooth spatial data fields of brightness temperatures.  

However, the conventional approach is in contrast to reality in which the brightness 

temperatures are in fact strongly dependent on landcover, which is characterized by sharp 

boundaries.  In this study, we mathematically de-convolve the observations into 

brightness temperature at the field scale (500-800m) using the sensor antenna response 

function.  The result is more accurate spatial representation of field-scale brightness 

temperatures, which may in turn lead to more accurate soil moisture retrieval. 
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1.  Introduction 

Microwave brightness temperatures (TB) have been used effectively for soil 

moisture retrieval (Jackson and Schmugge, 1989; Jackson 1993; Jackson et al., 1995, 

1997a, 1997b, 1999; Engman and Chauhan, 1995; Laymon et al., 1999, 2001).  Several 

airborne sensors have been used for measuring received energy in various wavelengths 

including L (~1.4 GHz), S (~2.5 GHz) and C (~7 GHz) bands.  Typically, the 

instantaneous field of view (IFOV) of these sensors is significantly greater than the 

spacing between adjacent footprints, i.e. the target surface is over-sampled.  Creating 

gridded data on spatial scales finer than the IFOV from the sensor observations results in 

significant smoothing.  In this study, a technique is developed that exploits the over-

sampling to provide accurate field-scale estimates of TB that exhibit heterogeneity and 

distinct boundaries consistent with the landscape.  The brightness temperatures estimated 

from this technique will subsequently allow more accurate retrieval of field-scale soil 

moisture.   

The analysis presented here is based on data collected during Soil Moisture 

Experiments in 2002 (SMEX02) conducted in the summer of 2002 around Ames, Iowa 

(Cosh et al., this issue; http://hydrolab.arsusda.gov/smex02/).  Ground sampling teams 

made daily measurements of soil moisture and temperature and periodic measurements of 

vegetation parameters at selected predetermined sites.  The experiment was conducted 

with the principle goal of validating brightness temperatures and soil moisture retrieval 

algorithms using data from the Advanced Microwave Scanning Radiometer for the Earth 
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Observing System (AMSR-E) launched in May 2002.  In support of this effort, several 

passive and active microwave instruments on aircraft were deployed to measure 

microwave emissions at higher resolution.  One such sensor was the Passive and Active L 

and S band (PALS) microwave instrument, a dual polarization sensor flown over the 

watershed study area (Wilson et al., 2001).  Analysis of individual PALS measurements 

reveals gradual smoothing of observed values in adjacent observations.  When overlaid 

with the landcover classification, the transitions in PALS brightness temperature between 

soybean and corn are seen to be gradual, in contrast to the almost binary SMEX02 

landscape.  Corn and soybean vegetation water content were significantly different during 

the study period.  The average vegetation water content for corn was approximately 4 

kg/m2, whereas the average for soybeans was 0.5 kg/m2.  Vegetation water content 

variability within the same crop type was much smaller than the between-crop type 

differences (Anderson et al., this issue).  Therefore, the corn or soybean within-field TB 

variability is expected to be much lower than the between-field variability.  Smoothing 

occurs due to the sensor antenna response function, since each observation covers more 

than one field and adjacent observations have varying contributions from those landcover 

types.  Conventional interpolation techniques rely on the value of adjacent observations 

as the basis for interpolation.  The two most commonly used interpolation techniques, 

inverse distance weighted interpolation (IDW) and Kriging (Maidment, 1993), produce 

comparable interpolation results for PALS observations; IDW is used in this analysis to 

represent the conventionally interpolated TB.  IDW interpolation is simply two-

dimensional linear interpolation in which the weights applied to each observation are 

inversely related to the distance from the point at which the interpolated value is being 
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calculated.  Use of these interpolation schemes without correcting for the antenna pattern 

results in a smooth brightness temperature field with suppressed between-field 

variability, in contrast to reality in which the brightness temperatures have sharp 

boundaries at the intersection of fields of different vegetation types.  This was the 

motivation for exploring a different approach to improve the mapping and gridding of 

airborne microwave brightness temperature observations.  Our approach is to impose the 

sensor antenna response function on the land surface and to extract individual landcover 

contributions to every observation, thereby mapping TB at the scale of the agricultural 

fields and preserving the strong between-field variability.  This approach has some 

similarities to those described by Poe (1990) and Long and Daum (1998), but is 

developed here for specific application to situation in which the spatial boundaries of 

contributing emitting sources are known apriori.  This application requires over-sampling 

whereby the mean distance between the microwave observations is shorter than the 

length of the typical agricultural field, so that on average there are multiple observations 

per field. 

 

2.  Study Area and Data 

2.1 Study Area 

The Walnut Creek study area overflown by PALS was approximately 300 km2.  

During the first half of the experiment (10 days), soils in the study area were dry 

(volumetric water content 8 – 10%).  Variable rainfall amounts in the study area on July 

5-6th increased the moisture content to 15-25%.  Daily soil moisture measurements were 

made at selected locations throughout the study area.  Vegetation properties were also 
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measured at different times during the experiment at those locations.  In this analysis, 

data from July 2nd are used to represent dry conditions, whereas data from July 7th are 

used for wet conditions.  Results for July 7th are emphasized because it followed scattered 

rainfall in the study area, resulting in high spatial variability of soil moisture. 

 

2.2 PALS Data 

The PALS microwave instrument is a recent contribution to the inventory of 

aircraft-based instruments.  The passive instrument operates at L band (1.41-GHz 

radiometer) and S band (2.69-GHz radiometer) with dual polarization and an incidence 

angle of 45°.  Data from the passive L band horizontal polarization are used in this paper.  

The instrument is flown on a C-130 aircraft, with the antennas viewing out the rear door 

directed downwards and to the rear of the aircraft.  The instrument is non-scanning, thus 

a single-footprint track is sampled along the flight path.  During SMEX02, PALS data 

were collected along 11 flight lines in the Walnut Creek region south of Ames, Iowa on 

eight days between June 25 and July 8, 2002.  The flying altitude of the aircraft was 1162 

m, with variations limited to just a few meters for all of the observations on all days.  The 

PALS brightness temperature observations were spaced about 100 m apart (after 

calibration preprocessing).  The footprint of each observation was elliptical, measuring 

about 350 m across track and 450 m along track (for L-band) at half power beam width.   

 

2.3 Land Cover Classification 

Land cover characterization was performed using Landsat Enhanced Thematic 

Mapper scenes from May 14, July 1 and July 17, 2002.  A tassel cap transformation was 
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performed on the July 1 image and a standard NDVI with red and near-infrared bands 

was computed using the May 14 and July 17 images.  The three output bands of the tassel 

cap transformation and the two NDVI images were used to partition the land surface into 

objects based on spatially contiguous spectral characteristics.  The objects are referred to 

as ‘segments’ based on scale and similarity criteria defined by the image analyst.  For this 

investigation, segments were defined to represent agricultural fields.  The typical corn or 

soybean field dimension is 500 - 800 m.  Subsequently, the segments were classified 

using the tassel cap transformation and two NDVI images with equal weight in a 

supervised classification with 11 classes, with the two dominant classes, corn and 

soybeans, constituting over 80% of the area covered by PALS observations.  The 

classification was verified to be 100% accurate at 31 study sites in the PALS mapping 

area.   

 

3. Optimal Deconvolution Method 

The optimal deconvolution (ODC) method consists of three steps.  The first step 

is to approximate the sensor antenna response function on the plane normal to the beam 

axis.  The second step is to project this function onto the horizontal (Earth) surface and to 

calculate the volume under this surface for each landcover segment within the sensor 

footprint.  Finally, a solution of an over-determined system of equations is found by 

minimizing the mean absolute difference between ODC-estimated and observed 

brightness temperatures.  Details of the technique are provided in the following sections. 
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3.1 Sensor Antenna Response Function over the Landcover Segments 

The basic assumption of this technique is that sensor-observed brightness 

temperatures (or ‘antenna temperatures’) are linear combinations of the contributing 

landcover segments, expressed as a two-dimensional spatial convolution of the sensor 

antenna response function with the actual brightness temperature distribution (Ulaby et 

al., 1986).  The emitted energy contributions of each segment are therefore not treated as 

uniform, but rather as functions of the sensor antenna response function and the 

proportion of the segment that is within the footprint.  Under the approximation (for 

simplicity) that the antenna response function can be reasonably well represented by a 

Gaussian surface, the volume under the surface covering each segment can be integrated 

to estimate the true contribution of that segment to the overall sensor observation.   

The PALS S-band antenna response function is given by Wilson et al. (2001).  S-

band half power beam width (3 dB beam width, from which approximately 50% of the 

power is received) is approximately 13°. Since the L- and S-band instrument antennas are 

scaled versions of one another, L-band half power beam width can be approximated to 

12° (based on L-band wavelength of 21.3 cm and aperture diameter 100cm, 3-dB beam 

width in radians for the L-band conical horn can be approximated by the ratio of 

wavelength and aperture diameter).  A Gaussian function can be used as a reasonable 

approximation to the shape of the response function close to the beam axis.  Because 

PALS has an incidence angle of 45°, each point on the horizontal surface must be 

projected onto the beam-normal plane.  Figure 1 illustrates the projection of the Gaussian 

function from the beam-normal plane to the assumed horizontal Earth surface.  The 

Gaussian surface has radial symmetry on the beam-normal plane; therefore the power 
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received at the sensor (P(r)) from any point at a radial distance r from the beam axis on 

the beam-normal plane is given by:   

   2
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The Gaussian function has only one parameter, the variance (σ2).   From the beam 

width and sensor altitude, r can be computed for any point on the beam-normal plane and 

the equation (1) can be solved for σ2. 

Defining the origin of our 3-D space as the point where the beam axis intersects 

the horizontal (Earth) surface, the sensor location becomes (Xs, 0, H) where  

    φtanHX s =     (2) 

where H is the altitude of the sensor and φ is the sensor incidence angle.  The equation for 

the plane through the origin and normal to the beam is given by: 

    Xs·X + H·Z = 0      (3) 

Substitution from (2) yields: 

    X·tanφ + z = 0     (4) 

Any arbitrary point (X1, Y1, 0) on the horizontal surface can be projected onto the 

beam-normal plane at (Xp, Yp, Zp) by solving the system of equations defined by (4) and 

the parametric representation of the vector from the sensor location (Xs, 0, H) to the 

arbitrary point (X1, Y1, 0).  This yields the following solution: 
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The distance r of any point (Xp, Yp, Zp) on the beam-normal plane to the origin is then 

given by: 

222 Zp YpXp r ++=     (8) 

 

To compute the total volume under the Gaussian surface, the irregular landcover 

segments in the sensor field of view are discretized over a fine (10 m) resolution grid on 

the horizontal plane with the center of the beam as the origin (Figure 1).  The corners of 

each grid cell are projected to the beam-normal plane using equations 5-8, and the areas 

of all cells on the beam-normal plane are computed.  The Gaussian function (equation 1) 

gives the weights for each cell on the beam-normal plane.  These weights are normalized 

with the corresponding beam-normal cell areas since those on the beam-normal plane are 

not constant, even though the corresponding cells on the horizontal plane are of equal 

area.  The extent of the 10 m grid is defined so as to cover 90% of the sensor power 

returned.  At the PALS altitude of 1162 m and incidence angle of 45°, the grid on the 

horizontal plane extends to approximately 350 m radius in the beam-normal plane, 

resulting in an ellipse of along-track radius of 520 m and across-track radius of 350 m. 
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3.2 Determining an Optimal Solution 

In order to co-locate the landcover segments and PALS observations, each is 

mapped to the same fine resolution grid.  These PALS observations are referred to here as 

‘postings’.  Even though each posting is associated with a point on the ground where the 

beam intersects the surface, it is important to note that each posting represents the 

observation made by the sensor within its field of view.  All the cell weights within a 

segment are integrated to determine the segment’s fractional contribution to the 

individual posting.  These segment-fractional contributions, normalized over all the 

integrals within the field of view, give what is termed as a segment Gaussian fraction 

(ranging from 0 to 1).  Over sampling in the observations allow several PALS postings to 

cover the same landcover segments, but with varying Gaussian fractions.  Therefore, we 

can de-convolve the observed sensor brightness temperatures into segment brightness 

temperatures by simultaneously solving the neighboring PALS postings with the 

corresponding contributions from the landcover segments.  The synthesized or ODC-

reconstructed sensor brightness temperatures are calculated as the summation of all 

brightness temperatures from contributing segments multiplied by their respective 

Gaussian fractions.  Because there are more equations (number of postings) than 

unknowns (segment TB), there is not a unique solution.  Therefore, an “optimal” solution 

is defined to minimize the difference between the ODC-reconstructed brightness 

temperatures and the postings.  The optimization problem is defined by the objective 

function: 

Minimize   ⏐ODC Reconstructed posting TB – observed posting TB ⏐  (9) 
postings  PALSAll
Σ
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Where: 

ODC Reconstructed posting TB = 
segmentslandcover 

 underlying All

Σ  (Gaussian fraction) * (Segment TB) (10) 

 

4. Results 

4.1 Comparison of PALS Observed Brightness Temperatures with ODC Reconstructed 

Postings 

The accuracy of the optimization algorithm can be easily demonstrated by 

comparing PALS-observed brightness temperatures with ODC-reconstructed postings.  

Figure 2 shows a comparison of ODC-reconstructed brightness temperatures with 

observed L band horizontally polarized postings for July 2 and July 7, representing dry 

and wet conditions, respectively; related statistics are given in Table 1.  The mean 

absolute errors (MAE) for the two days are 0.51 and 1.19 K; the R2 values are 0.97 for 

both days and the root mean square errors (RMSE) are 0.90 and 2.06 K, respectively.  

The means of the ODC-reconstructed brightness temperatures were not found to be 

statistically different from the postings.     

 

4.2 Verification of ODC Estimates 

 The ideal validation of ODC estimates would be with respect to independent TB 

observations.  In the absence of such measurements, we defined a proxy with a subset of 

the PALS observations in which the Gausian fraction is greater than 0.95.  We refer to 

these observations as “pure” postings because over 95% of the contribution is from a 

single segment.  A ‘pure postings segment TB’ is defined as the mean of all pure postings 

contained in the segment, the value of which is deemed to be the best estimate of the 
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brightness temperature of that field.  Such postings provide significant detail about the 

segment.  However, in order to perform an independent verification of the ODC 

approach, we repeated the analysis with pure postings omitted, thereby isolating the pure 

postings subset for verification.  The ODC-estimated segment TB (without the pure 

postings) for all of the days PALS was flown in July 2002 (Dates: 1, 2, 5, 6, 7 and 8) are 

compared with pure posting segment TB in Figure 3.  Also shown in fig. 3 are segment 

TB obtained by applying IDW interpolation to PALS observations.  It is clear that the 

ODC results are in a better agreement with pure postings segment TB.  The IDW 

smoothing can be noticed in the overestimation at lower brightness temperatures 

(soybeans) and underestimation at higher values (corn).  The associated statistics for corn 

and soybeans are shown in Table 2.  Means, minima, maxima and variances for ODC and 

pure postings segment TB are similar, whereas IDW results in under- or over-estimation 

of TB in higher or lower ranges, respectively.  The means of ODC-estimated segment TB 

are statistically similar to the pure postings segment TB while that is not true of IDW-

estimated segment TB.  Mean absolute error (MAE) and root mean square error (RMSE) 

are significantly lower for ODC-estimated segment TB than for IDW-estimated segment 

TB. 

Pure postings represent a small portion of all postings, since they must be located 

near the center of a large segment.  The other postings cover a heterogeneous mix of 

contributing segments within their footprints.  To verify the efficacy of the technique 

over heterogeneous areas, randomly selected ODC-reconstructed postings were compared 

with the corresponding observed postings.  This verification can be done only for the 

posting and not for the segments since a non-pure posting has contributions from more 
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than one landcover type.  One hundred observed postings were randomly omitted, one at 

a time, and the ODC analysis performed.  In this way, the verification dataset is kept 

distinct from the analysis dataset.  The ODC-reconstructed posting estimates were then 

compared with the omitted observed postings.  Figure 4 shows the plot of ODC 

reconstructed postings compared with the withheld observations for July 7.  The observed 

omitted postings agree well with the ODC reconstructed postings with an R2 of 0.98, an 

MAE of 1.32 K and an RMSE of 1.88 K (Table 3).   

 

4.3 Comparison of ODC versus Inverse Distance Weighted Brightness Temperature 

Estimates 

We illustrate the differences between the ODC and IDW brightness temperature 

estimates by plotting a transect corresponding to a part of a single flight line on July 7 

(Figure 5).  The figure clearly illustrates the smoothing effect of interpolation that is 

particularly evident at landcover boundaries. The lower part of the figure shows PALS 

postings along with IDW- and ODC-estimated TB along the flight line.  By definition, 

the PALS observations and IDW-interpolated estimates have identical values.  The large 

difference between corn and soybean TB is obvious across the transect.  The observed 

and IDW-interpolated TBs clearly illustrate the smoothing caused by the contributions 

from neighboring landcover segments within the sensor footprint.   In other words, the 

transition between crop types is more gradual in the observed and IDW-interpolated 

estimates.  In contrast, ODC-estimated TBs preserve the sharp boundaries between 

different land cover types.  Thus, the dynamic range of brightness temperatures between 
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corn and soybeans is more pronounced with the ODC estimates than with the IDW 

estimates.   

The effect of smoothing by interpolation can also be seen clearly in Figure 6, 

which shows a spatial comparison of IDW interpolated estimates with ODC.  IDW-

estimated TBs (panel D) are computed over the same 10 m grid that is used in the ODC 

analysis and averaged for each segment (panel C).  Thus, the ODC-estimated segment 

TBs (panel B) in comparison with IDW-estimated segment mean TBs show that the IDW 

method yields a smaller difference between corn and soybeans (as seen in Figure 5).  The 

spatial structure of corn and soybean segments can also be deciphered in the ODC-

estimated segment TB, whereas IDW grid or segment average interpolations are smooth 

and lack clarity. 

Segment mean TB from corn and soybeans estimated in both the ODC and IDW 

methods are from statistically distinct populations.  However, the separation in IDW 

estimates of corn and soybean TB during both dry and wet conditions is much smaller 

than that seen in ODC estimates.  The improved ODC-estimated segment mean TB 

should potentially lead to better field scale soil moisture estimation.  Evaluation of the 

improvement in soil moisture estimation involves treatment of retrieval algorithms, in 

situ data quality and sampling and data registration issues.  This evaluation is important 

and is the subject of ongoing collaborative studies using the SMEX02 data. 

 

5.  Summary and Discussion 

The ODC technique uses the sensor antenna response function of a microwave 

remote sensor to de-convolve the observed brightness temperature into segment 
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brightness temperatures.  This technique can be applied to a regular grid or, as in this 

analysis, to an irregular landcover pattern of agricultural fields (segments).  The 

technique was used to estimate field–scale brightness temperatures that we show to be 

more realistic and more accurate than conventional interpolation techniques in two ways.  

First, ODC-estimated TBs were shown to correlate better with PALS pure postings 

segment TB than with IDW-estimated segment TB.  Pure postings were omitted from this 

analysis and used as the independent verification source.  ODC estimated segment TB 

were also shown to better characterize the dynamic range of brightness temperatures 

between corn and soybean fields, while interpolated TB unrealistically suppress the 

dynamic range between contrasting fields.  Such increased fidelity in brightness 

temperature estimation may lead to improved field scale soil moisture retrieval.   

Successful application of the ODC technique in this study can be attributed to 

observation over-sampling, large segments with relative homogeneity, and significant 

brightness temperature contrast among land cover components.  The ODC technique can 

be of significant help in refining soil moisture retrieval algorithms compared to 

conventional interpolation methods that tend to smooth the transition between objects in a 

heterogeneous data field and suppress the overall dynamic range of the data.    The ODC 

technique can also be effectively applied to other airborne microwave sensors supporting 

validation work in field experiments such as SMEX02. 

Results of the analysis using only PALS L band horizontal polarization are 

presented in this paper.  However, in addition to the L band horizontal polarization, we 

have also performed ODC analysis on L band vertical polarization.  Brightness 

temperatures from vertical polarization show higher TB values, but the trends are similar.  
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Likewise, similar conclusions can also be made from S band data.  Thus, the results from 

vertical polarization or the S band data are not presented for the sake of brevity.   

Further research will examine the application of the ODC technique to space-

based microwave sensors.  It is possible that the application of the ODC technique is 

limited to conditions where the TB heterogeneity between grid cells (analogous to 

segments in this analysis) is greater than it is within each cell.  ODC can be used to 

estimate TB for land surface areas on a regular grid as long as the grid cell dimension is 

greater than the mean distance between remote sensing observations (postings).  This 

requirement leads to over-sampling of the cell by adjacent observations.   With regards to 

the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) on the Aqua 

satellite, the spacing between adjacent observations is 10 km whereas the AMSR-E IFOV 

extends approximately 75 km along track and 45 km across track.  Therefore, ODC can 

be applied to AMSR-E on a 20-25 km grid, which is comparable to the 25 km EASE grid 

on which the AMSR-E brightness temperature and soil moisture products are currently 

averaged (using a method analogous to IDW in this analysis).  Although results have not 

yet been evaluated, application of ODC to AMSR-E data may result in improvements 

over the current averaged TB reported for the EASE grid.  It is likely that the application 

of the ODC technique to AMSR-E data will be useful to extend spatial coverage in the 

vicinity of shorelines of large water bodies.  Near shorelines, the large sensor IFOV 

includes the water body with lower TB and the land area with typically higher TB.  This 

renders useless any averaged observations within some distance of the coastline (roughly 

the dimension of the IFOV, or 2-3 IFOV depending on the accuracy required).  This 

situation is analogous to the analysis presented in this paper where soybeans and corn 
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vegetation biomass (and therefore microwave brightness temperatures) are significantly 

different.  Thus, for a water body larger than the spacing between the observations, ODC 

can extract the shoreline with better clarity than the existing observations.     
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Table 1. Statistics of observed and ODC-reconstructed postings for July 2 and July 7, 
2002. 

 

 
Reconstructed  
Postings July 2 

Observed 
Postings July 2

Reconstructed  
Postings July 7 

Observed 
Postings July 7 

Mean 276.40 276.40 244.05 243.99 
Min 235.39 239.09 202.63 196.75 
Max 286.34 286.03 273.40 273.58 

Std dev 4.84 4.88 12.72 12.90 
r2 0.97  0.97  

MAE 0.51  1.19  
RMSE 0.90  2.06  

t-test w/ Not a Statistically  Not a Statistically  
observed Significant Difference  Significant Difference  
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Table 2. Comparison of corn and soybean ODC and IDW segment TB estimates with 
segment averages derived from ‘pure’ PALS postings on all days PALS was flown in 
July. 
 

CORN Pure ODC W/o Pure IDW 
Mean 269.97 269.59 262.99 
Min 240.20 243.88 239.27 
Max 284.58 284.35 281.71 

Std dev 8.92 9.00 11.81 
r2  0.88 0.78 

MAE  2.25 7.21 
RMSE  3.19 8.85 

t-test w/Pure   Not a Statistically Statistically  
    Significant Difference Significant Difference 

 
 
SOYBEANS Pure ODC W/o Pure IDW 

Mean 244.79 244.32 250.8 
Min 206.52 206.38 223.88 
Max 279.99 279.34 280.28 

Std dev 21.22 20.76 17.46 
r2  0.96 0.86 

MAE  2.71 6.29 
RMSE  4.10 8.56 

t-test w/Pure   Not a Statistically Statistically  
    Significant Difference Significant Difference 
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Table 3. Statistics of ODC-reconstructed posting TB estimates with respect to observed 
PALS postings omitted in this ODC analysis for July 7, 2002. 
 

  
ODC Reconstructed 

Postings 
Omitted Observed

Postings 
Mean 244.26 244.02 
Min 205.67 203.20 
Max 272.11 271.80 

Std Dev 13.53 13.84 
r2 0.98   

MAE 1.32   
RMSE 1.88   

t-test w/ Obs Not a Statistically    
  Significant Difference   
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Figure 1.  Illustration of the projection of the antenna response function onto the 
horizontal Earth surface.   
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Figure 2.  Comparison of ODC-reconstructed posting L band H polarization brightness 
temperatures with PALS-observed TB for dry and wet conditions on July 2 and July 7, 
2002 respectively. 
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Figure 3. Validation of ODC segment L band H polarization brightness temperatures, 
compared with segment averages derived from pure postings for all the days in July on 
which PALS was flown.  In this application the ODC analysis was performed with the 
pure postings omitted. 
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Figure 4.  Comparison of ODC-reconstructed brightness temperatures with omitted PALS 
postings for July 7, 2002. 
 
 
 
 

 26



 
 
Figure 5.  Transect of PALS postings, landcover segmentation, IDW interpolation and 
underlying segment ODC brightness temperatures for July 7, 2002. 
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Figure 6.  ODC segment TB, IDW interpolated L band H polarization brightness 
temperatures averaged over each segment, and IDW estimates on a 10 m grid for the 
SMEX02 watershed study area on July 7, 2002.  Yellow in the segments represent corn, 
whereas green in the segments represents soybeans. 
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