

Updates on NRL Near Real-Time Satellite Products

Song Yang

Mindy Surratt, Chris Camacho, Andy Lambert, Back Sampson and collaborators Naval Research Laboratory, Marine Meteorology Division

TROPICS Applications Telecon, Feb 23, 2022

- 1. Updates on the Navy's Geolocated Information Processing System (GeoIPS[®])
- 2. Examples of TC Products
- 3. Plans for TROPICS Products
- 4. New NRL TC Webpage (demo)
- 5. Summary

Problems

- Current Navy weather processing systems rely on costly proprietary packages
 - Large development times
- No standardized processing system across weather community
 - Inhibits efficient transfer of new ideas and capabilities between institutions
 - Inhibits efficient transitions of new functionality to operations
- No method for seamless integration with proprietary applications

No processing system capable of facilitating efficient transitions or handling proprietary applications

Solution: GeoIPS[®]

(collaborative development efforts led by Mindy Surratt)

- **Common platform from Research and Development through Operations**
- Facilitate rapid transitions of new products

Easy to Use

• Able to run without in-depth knowledge of the code

Non-Proprietary

U.S. NAVAL

LABORATORY

Main code base open-source

Data Fusion

• Able to combine multiple datasets into a single product

Generalized

• The majority of the code is the same for all datasets

Extendable

- Addition of new data types, products, and output formats is straightforward
 - Incorporate proprietary data sets and algorithms

Generalized processing system for combining geo-located datasets into unique products

GeoIPS[®] Capabilities

GeoIPS[®] Structure Overview

Current Collaborations

GeoIPS[®] development efforts funded by the Office of Naval Research

NRL Maintains collaborative open source code base and Navy-specific functionality

Operational Transition Partners

National Hurricane Center (NHC)

Fleet Numerical Meteorology and Oceanography Center (FNMOC)

Current and future Navy users of GeoIPS[®] products:

- Joint Typhoon Warning Center (JTWC)
- Fleet Weather Centers (San Diego and Norfolk)

Strike Group Oceanography Team (SGOT)

7th Fleet, Navy Oceanography ASW Detachment (NOAD)-Kadena

Naval Oceanography Antisubmarine Warfare Center (NOAC) in Yokosuka, Japan

Leverage research and operational partners

Research Partners

University of Wisconsin Cooperative Institute for Meteorogical **CIMSS** Satellite Studies (CIMSS)

Colorado State University Cooperative Institute for Research in the Atmosphere (CIRA)

7

Lessons Learned:

- Modularity / streamlined integration of external plugins is important! (ie, proprietary applications)
- Backwards compatible development is important!
- Thorough testing and continuous integration / continuous development capabilities are important! (Make sure you don't break what's already there)

Future work:

- Develop streamlined open source release cycle rapid integration of capabilities outside of DoD
- Share open source GeoIPS infrastructure with international collaborators
- Direct GeoIPS[®] integration of machine learning infrastructures

Examples of NRL TC Products

AL09 Ida

GMI 89H

GOES-16 ABI IR

AMSR2 Color89

Examples of NRL TC Products

ALO9 Ida SH07 ANA Metop-B ASCAT WindSpeed Metop-B ASCAT UHR Windbarbs

SH07 Seven HY-2B HSCAT Windbarbs

42°E

46°E

SH07 SEVEN at 2022-01-24 03:14:08

HY-2B HSCAT windbarbs at 2022-01-24 03:12:03 Data copyright 2021 EUMETSAT, Imagery NRL-MRY

40°E

36°E

38°E

Ultrahigh Resolution (UHR), 4km

SH07 ANA at 2022-01-24 06:00:00, NRL-Monterey

Ku-band scatterometer (HSCAT), 50km

12.5km

Plans for TROPICS TC Products

- 1. Image products (91GHz)
- 2. Mtif products for ATCF
- 3. Precipitation products
- 4. Temperature and moisture profiling products
- 5. Vmax products
- 6. Better uncertainty estimation and data selection algorithms to maximize TROPICS information for numerical weather prediction

TROPICS Chan.	Center Freq. (GHz)	Bandwidth (GHz)	RF Span (GHz)	Beamwidth (degrees) Down/Cross	Nadir Footprint Geometric Mean (km)*	Measure d NEdT (K)
1	91.656 ± 1.4	1.000	89.756-90.756, 92.556-93.556	3.0/3.17	29.6	0.66
2	114.50	1.000	114.00-115.00	2.4/2.62	24.1	0.96
3	115.95	0.800	115.55-116.35	2.4/2.62	24.1	0.82
4	116.65	0.600	116.35-116.95	2.4/2.62	24.1	0.86
5	117.25	0.600	116.95-117.55	2.4/2.62	24.1	0.79
6	117.80	0.500	117.55-118.05	2.4/2.62	24.1	0.81
7	118.24	0.380	118.05-118.43	2.4/2.62	24.1	0.90
8	118.58	0.300	118.43-118.73	2.4/2.62	24.1	1.03
9	184.41	2.000	183.41-185.41	1.5/1.87	16.9	0.58
10	186.51	2.000	185.51-187.51	1.5/1.87	16.9	0.55
11	190.31	2.000	189.31-191.31	1.5/1.87	16.9	0.53
12	204.8	2.000	203.8-205.8	1.35/1.76	15.2	0.52

U.S.NAVAL RESEARCH LABORATORY

Classic NRL Tropical Cyclone Webpage http://www.nrlmry.navy.mil/TC.html

The Classic NRL TC webpage has been running for over 20 years. It will be replaced by a modernized new NRL TC webpage in the near future.

Sensor	Latest	Next (View All)		
SSMI	/ Z Z,	0000	/ Z Z,	0000
TC_SSMIS	02/15 1539 Z, F-17	2184	02/15 1544 Z, F17	0366
GMI	02/15 1522 Z, GPM	0590	02/16 0249 Z, GPM	0369
AMSR2	02/15 1058 Z, GCOM-W-1	1739	02/15 1101 Z, GCOM-W1	0839

New NRL TC Webpage (demo)

New NRL TC webpage (demo): <u>https://www.nrlmry.navy.mil/tcdemo/tc_web/active/</u>

Main Features

- 1) User friendly interactive dynamic TC webpage
- 2) Active/Archives/TCname
- 3) Product-based option
- 4) Platform-based option
- 5) Sensor-based option
- Advanced filter (Geo/Polar; mini coverage; mini wind speed)
- Color-based time products

New NRL TC Webpage (cont.)

U.S.NAVAL _RESEARCH_

New NRL TC Webpage (cont.)

Select one platform (i.e., metop-b)

Select one sensor (i.e., VIIRS)

- The open-sourced GeoIPS is successfully developed and implemented for the NRL operational and research applications. It is an actively ongoing project for continuous improvements and applications;
- GeoIPS is a result of the collaborative efforts by NRL and partners. The community contributions and applications to GeoIPS updates are welcome;
- All NRL TC products are now generated by GeoIPS. The TeraScan products is now an history for NRL TC products;
- ***** The NRL TROPICS TC products should be available in the upcoming TC season;
- The new NRL TC webpage should be running at least in parallel mode in the 2022
 TC season.