Evaluating and Improving TROPICS Millimeter-Wave Sounder's Precipitation Estimate over Ocean

Yalei You¹, George Huffman², Chris Kidd^{2,3}, Scott Braun², William Blackwell⁴, John X. Yang³, Cheng Da³

¹UNCW (<u>youy@uncw.edu</u>), ²NASA GSFC, ³UMD, ⁴MIT

Acknowledgement: NASA Weather and Dynamics and NASA Global Precipitation Measurement Program

Objective: Improving TMS' retrievals by morphing conical scanning radiometers' retrieval

Motivation: Conical > Cross-track over ocean

Innovation:

- Compare TMS retrieval relative to results from other passive microwave sensors
- Improve TMS retrieval results by morphing technique
- Motion vector derived from precipitation rate directly, instead of IR or model variables

- CMORPH: Morphing Microwave to IR
- Morphing among Microwave sensors

• Cross-track Scanning Radiometers (Sounder) :

FOV varies along the scan line, AMSU, MHS, ATMS, TMS

• Conical Scanning Radiometers (Imager):

FOV remains constant along the scan line, AMSRE, AMSR2, TMI, GMI, SSMIS

- This study uses 9 radiometers:
 - 4 Cross track: MHSs onboard NOAA19 and MetOp-B, ATMS onboard NPP, and TMS
 - **5 Conical**: SSMIS onboard F16, F17, and F18, AMSR2, and GMI

Motivation: Conical > Cross-track over ocean

• Coincident observations between KuPR (GMI) and each sensor

You et al., JHM, 2020, 2021.

Physical reason: low-freq. channel availability

	GMI	MHS	
High frequency (GHz)	89, 166, 183	89, 157, 183	-
Low frequency (GHz)	10, 19, 24, 37		

Freezing level height (0 C) at ~5km

Physical reason: spatial resolution

GMI (conical) scan line @ 183 GHz

ATMS (cross-track) scan line @ 183 GHz

Case study: Morphing F17-SSMIS backward to NOAA19-MHS

Tropical Strom Hernan on 2020-08-29

Case1: Morphing F17-SSMIS backward to NOAA19-MHS

Case2: Morphing F17-SSMIS backward to NOAA19-MHS

Overall performance for all sounders

Overall performance for all sounders (GMI as the reference)

How TMS retrieval performs, relative to other passive microwave sensors (PMWs):

- **PMW Sensors**
 - 4 Cross track: 2 MHSs, ATMS onboard NPP, and TMS
 - 5 Conical: 3 SSMISs, AMSR2, and GMI
- Temporal & spatial coverage
 - June to November 2021
 - 50S to 50N
- Algorithms
 - PRPS for TMS
 - GPROF for other PMWs

TMS meets GMI

• observations from GMI and TMS: < 15 minutes & < 15 km

• observations from GMI and other sensors: < 15 minutes & < 15 km

Overall performance for TMS (GMI as the reference)

Overall performance for TMS (GMI as the reference)

- TMS retrieval results are comparable to other cross-track scanning radiometers
 TMS retrieval results
- TMS retrieval results perform worse than those from conical scanning radiometers

Case study: Morphing AMSR2 forward to TMS

15S

75E

80E

85E

Black curves in each plot represent the GMI swath boundaries

90E

0

15S

75E

80E

85E

0

90E

Case study: Morphing AMSR2 forward to TMS

Case study: Morphing F16-SSMIS backward to TMS

Black curves in each plot represent the GMI swath boundaries

Case study: Morphing F16-SSMIS backward to TMS

Overall performance for TMS (GMI as the reference)

• Correlation improves from 0.35 to 0.49

The value of the sounder retrieval

	Correlation	RMSE (mm/hr)	Bias
TMS, Original	0.35	3.82	-2.76%
Conical, Propagated	0.50	3.21	-4.34%
TMS, Morphed	0.49	3.12	-3.55%

The value of the sounder retrieval

Conclusions and Discussions:

• TMS retrieval results are comparable to other cross-track scanning

radiometers

- TMS retrieval results perform worse than those from conical scanning radiometers
- Create a blended Level2 product

Acknowledgments:

- NASA grant 80NSSC20K0903 from the Weather and Atmospheric Dynamics program
- NASA's Precipitation Measurement Mission

Backup slides

Improvement degree differs:

• We also analyzed three other factors: precipitation type (convective vs. stratiform), precipitation event size (large vs. small), and region (tropics vs. subtropics)

(b) Correlation over vegetation

• Coincident observations between KuPR (GMI) and each sensor

Improvement degree differs:

	Correlation	RMSE (mm/hr)	Bias (%)	Sample size
NOAA19-MHS original	0.51	2.64	-15.23	486,606
NOAA19-MHS morphed	0.65	2.45	-13.44	486,606
NOAA18-MHS original	0.53	2.82	-16.83	302,527
NOAA18-MHS morphed	0.66	2.66	-17.70	302,527
MetOpA-MHS original	0.55	2.96	-18.06	221,869
MetOpA-MHS morphed	0.60	3.04	-19.63	221,869
MetOpB-MHS original	0.53	2.71	-16.94	227,126
MetOpB-MHS morphed	0.59	2.81	-18.71	227,126
ATMS original	0.53	2.49	-12.27	613,913
ATMS morphed	0.72	2.08	-7.84	613,913

Degree of the improvement can be grouped into three categories:

- 1. ATMS
- 2. MHSs from NOAA18 and NOAA19
- 3. MHSs from MetOpA and MetOpB

Improvement degree differs:

Why ATMS improves the most:

- Almost all the morphed precipitation rates are from AMSR2 (precipitation sources)
- Almost all the time differences between ATMS and AMSR2 < 60 minutes (time interval)
- We also analyzed three other factors: precipitation type (convective vs. stratiform), precipitation event size (large vs. small), and region (tropics vs. subtropics)

More sensors (conical), better performance: possible connection with FY conical sensors

Whether or not a cross-track scanning sensor can meet a conical scanning sensor depends on their orbital features

- ATMS and AMSR2 are close to each other
- MetOpA and B do not meet F16 in a +/- 3 hr window